|
||||
File indexing completed on 2025-01-18 09:59:30
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 /////////////////////////////////////////////////////////////////////////// 0027 // 0028 // Rough model describing a gamma function distributed radiator of X-ray 0029 // transition radiation. XTR is considered to flux after radiator! 0030 // Thicknesses of plates and gas gaps are distributed according to gamma 0031 // distribution. x are thicknesses of plates or gas gaps: 0032 // 0033 // p(x) = (alpha/<x>)^alpha * x^(alpha-1) * std::exp(-alpha*x/<x>) / G(alpha) 0034 // 0035 // G(alpha) is Euler's gamma function. 0036 // Plates have mean <x> = fPlateThick > 0 and power alpha = fAlphaPlate > 0 : 0037 // Gas gaps have mean <x> = fGasThick > 0 and power alpha = fAlphaGas > 0 : 0038 // We suppose that: 0039 // formation zone ~ mean thickness << absorption length 0040 // for each material and in the range 1-100 keV. This allows us to simplify 0041 // interference effects in radiator stack (GetStackFactor method). 0042 // 0043 // History: 0044 // 0045 // 03.10.05 V. Grichine, first version 0046 // 0047 0048 #ifndef G4XTRGammaRadModel_h 0049 #define G4XTRGammaRadModel_h 1 0050 0051 #include "G4LogicalVolume.hh" 0052 #include "G4Material.hh" 0053 #include "G4VXTRenergyLoss.hh" 0054 0055 class G4XTRGammaRadModel : public G4VXTRenergyLoss 0056 { 0057 public: 0058 explicit G4XTRGammaRadModel(G4LogicalVolume* anEnvelope, G4double, G4double, 0059 G4Material*, G4Material*, G4double, G4double, 0060 G4int, 0061 const G4String& processName = "XTRgammaRadiator"); 0062 ~G4XTRGammaRadModel(); 0063 0064 void ProcessDescription(std::ostream&) const override; 0065 void DumpInfo() const override { ProcessDescription(G4cout); }; 0066 0067 G4double GetStackFactor(G4double energy, G4double gamma, 0068 G4double varAngle) override; 0069 }; 0070 0071 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |