Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:59:21

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // G4VGaussianQuadrature
0027 //
0028 // Class description:
0029 //
0030 // Base Class for realisation of numerical methodes for integration of functions
0031 // with signature double f(double) by Gaussian quadrature methods
0032 // Roots of ortogonal polynoms and corresponding weights are calculated based on
0033 // iteration method (by bisection Newton algorithm). Constant values for initial
0034 // approximations were derived from the book:
0035 //   M. Abramowitz, I. Stegun, Handbook of mathematical functions,
0036 //   DOVER Publications INC, New York 1965 ; chapters 9, 10, and 22.
0037 
0038 // Author: V.Grichine, 18.04.1997
0039 // --------------------------------------------------------------------
0040 #ifndef G4VGAUSSIANQUADRATURE_HH
0041 #define G4VGAUSSIANQUADRATURE_HH 1
0042 
0043 #include "globals.hh"
0044 
0045 using function = G4double (*)(G4double);
0046 
0047 class G4VGaussianQuadrature
0048 {
0049  public:
0050   explicit G4VGaussianQuadrature(function pFunction);
0051   // Base constructor
0052 
0053   virtual ~G4VGaussianQuadrature();
0054   // Virtual destructor
0055 
0056   G4VGaussianQuadrature(const G4VGaussianQuadrature&) = delete;
0057   G4VGaussianQuadrature& operator=(const G4VGaussianQuadrature&) = delete;
0058 
0059   G4double GetAbscissa(G4int index) const;
0060   G4double GetWeight(G4int index) const;
0061   G4int GetNumber() const;
0062   // Access functions
0063 
0064  protected:
0065   G4double GammaLogarithm(G4double xx);
0066   // Auxiliary function which returns the value of std::log(gamma-function(x))
0067 
0068   //  Data members common for GaussianQuadrature family
0069   //
0070   function fFunction;             // pointer to the function to be integrated
0071   G4double* fAbscissa = nullptr;  // array of abscissas
0072   G4double* fWeight   = nullptr;  // array of corresponding weights
0073   G4int fNumber = 0;  // the number of points in fAbscissa and fWeight arrays
0074 };
0075 
0076 #endif