|
||||
File indexing completed on 2025-01-18 09:59:21
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // G4VGaussianQuadrature 0027 // 0028 // Class description: 0029 // 0030 // Base Class for realisation of numerical methodes for integration of functions 0031 // with signature double f(double) by Gaussian quadrature methods 0032 // Roots of ortogonal polynoms and corresponding weights are calculated based on 0033 // iteration method (by bisection Newton algorithm). Constant values for initial 0034 // approximations were derived from the book: 0035 // M. Abramowitz, I. Stegun, Handbook of mathematical functions, 0036 // DOVER Publications INC, New York 1965 ; chapters 9, 10, and 22. 0037 0038 // Author: V.Grichine, 18.04.1997 0039 // -------------------------------------------------------------------- 0040 #ifndef G4VGAUSSIANQUADRATURE_HH 0041 #define G4VGAUSSIANQUADRATURE_HH 1 0042 0043 #include "globals.hh" 0044 0045 using function = G4double (*)(G4double); 0046 0047 class G4VGaussianQuadrature 0048 { 0049 public: 0050 explicit G4VGaussianQuadrature(function pFunction); 0051 // Base constructor 0052 0053 virtual ~G4VGaussianQuadrature(); 0054 // Virtual destructor 0055 0056 G4VGaussianQuadrature(const G4VGaussianQuadrature&) = delete; 0057 G4VGaussianQuadrature& operator=(const G4VGaussianQuadrature&) = delete; 0058 0059 G4double GetAbscissa(G4int index) const; 0060 G4double GetWeight(G4int index) const; 0061 G4int GetNumber() const; 0062 // Access functions 0063 0064 protected: 0065 G4double GammaLogarithm(G4double xx); 0066 // Auxiliary function which returns the value of std::log(gamma-function(x)) 0067 0068 // Data members common for GaussianQuadrature family 0069 // 0070 function fFunction; // pointer to the function to be integrated 0071 G4double* fAbscissa = nullptr; // array of abscissas 0072 G4double* fWeight = nullptr; // array of corresponding weights 0073 G4int fNumber = 0; // the number of points in fAbscissa and fWeight arrays 0074 }; 0075 0076 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |