Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:59:05

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // G4SimpleIntegration
0027 //
0028 // Class description:
0029 //
0030 // Class for realisation of simple numerical methodes for integration of
0031 // functions with signature: double f(double). The methods based mainly on
0032 // algorithms given in the book:
0033 //   An introduction to NUMERICAL METHODS IN C++,
0034 //   B.H. Flowers, Claredon Press, Oxford, 1995.
0035 
0036 // Author: V.Grichine, 26.03.1997
0037 // --------------------------------------------------------------------
0038 #ifndef G4SIMPLEINTEGRATION_HH
0039 #define G4SIMPLEINTEGRATION_HH 1
0040 
0041 #include "G4Types.hh"
0042 
0043 using function = G4double (*)(G4double);
0044 
0045 class G4SimpleIntegration
0046 {
0047  public:
0048   explicit G4SimpleIntegration(function pFunction);
0049 
0050   G4SimpleIntegration(function pFunction, G4double pTolerance);
0051 
0052   ~G4SimpleIntegration() = default;
0053 
0054   G4SimpleIntegration(const G4SimpleIntegration&) = delete;
0055   G4SimpleIntegration& operator=(const G4SimpleIntegration&) = delete;
0056   // Private copy constructor and assignment operator.
0057 
0058   // Simple integration methods:
0059   // Trapezoidal, MidPoint, Gauss and Simpson(double a,double b,int n)
0060   // - integrate function pointed by fFunction from a to b by n iterations,
0061   //   i.e. with Step (b-a)/n according to the correspondent method.
0062 
0063   G4double Trapezoidal(G4double xInitial, G4double xFinal,
0064                        G4int iterationNumber);
0065 
0066   G4double MidPoint(G4double xInitial, G4double xFinal, G4int iterationNumber);
0067 
0068   G4double Gauss(G4double xInitial, G4double xFinal, G4int iterationNumber);
0069 
0070   G4double Simpson(G4double xInitial, G4double xFinal, G4int iterationNumber);
0071 
0072   // Adaptive Gauss integration with accuracy ~ fTolerance
0073 
0074   G4double AdaptGaussIntegration(G4double xInitial, G4double xFinal);
0075   // Integrate function from a to be with accuracy <= fTolerance
0076 
0077  protected:
0078   G4double Gauss(G4double xInitial, G4double xFinal);
0079 
0080   void AdaptGauss(G4double xInitial, G4double xFinal, G4double& sum,
0081                   G4int& depth);
0082 
0083  private:
0084   function fFunction;              // pointer to the function to be integrated
0085   G4double fTolerance   = 0.0001;  // accuracy of integration
0086   const G4int fMaxDepth = 100;     // constant maximum iteration depth
0087 };
0088 
0089 #endif