|
||||
File indexing completed on 2025-01-18 09:58:57
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // 0027 // ------------------------------------------------------------------- 0028 // GEANT4 Class file 0029 // 0030 // 0031 // File name: G4PolynomialPDF 0032 // 0033 // Author: Jason Detwiler (jasondet@gmail.com) 0034 // 0035 // Creation date: Aug 2012 0036 // 0037 // Description: Evaluates, generates random numbers from, and evaluates 0038 // the inverse of a polynomial PDF, its CDF, and its first and second 0039 // derivative. 0040 // 0041 // ------------------------------------------------------------------- 0042 0043 #ifndef G4POLYNOMIALPDF_HH 0044 #define G4POLYNOMIALPDF_HH 0045 0046 #include "globals.hh" 0047 #include <vector> 0048 0049 class G4PolynomialPDF 0050 { 0051 public: 0052 G4PolynomialPDF(size_t n = 0, const double* coeffs = nullptr, 0053 G4double x1=0, G4double x2=1); 0054 0055 ~G4PolynomialPDF(); 0056 // Setters and Getters for coefficients 0057 inline void SetNCoefficients(size_t n) { fCoefficients.resize(n); fChanged = true; } 0058 inline size_t GetNCoefficients() const { return fCoefficients.size(); } 0059 inline void SetCoefficients(const std::vector<G4double>& v) { 0060 fCoefficients = v; fChanged = true; Simplify(); 0061 } 0062 inline G4double GetCoefficient(size_t i) const { return fCoefficients[i]; } 0063 void SetCoefficient(size_t i, G4double value, bool doSimplify); 0064 void SetCoefficients(size_t n, const G4double* coeffs); 0065 void Simplify(); 0066 0067 // Set the domain over which random numbers are generated and over which 0068 // the CDF is evaluated 0069 void SetDomain(G4double x1, G4double x2); 0070 0071 // Normalize PDF to 1 over domain fX1 to fX2. Used internally by 0072 // GetRandomX(), but the user may want to call this as well for evaluation 0073 // purposes. 0074 void Normalize(); 0075 0076 // Evaluate (d/dx)^ddxPower f(x) (-1 <= ddxPower <= 2) 0077 // ddxPower = -1 -> CDF; 0078 // ddxPower = 0 -> PDF 0079 // ddxPower = 1 -> PDF' 0080 // ddxPower = 2 -> PDF'' 0081 G4double Evaluate(G4double x, G4int ddxPower = 0); 0082 0083 // Generate a random number from this PDF 0084 G4double GetRandomX(); 0085 0086 // Set the tolerance to within negative minima are checked 0087 inline void SetTolerance(G4double tolerance) { fTolerance = tolerance; } 0088 0089 // Find a value x between x1 and x2 at which ddxPower[PDF](x) = p. 0090 // ddxPower = -1 -> CDF; 0091 // ddxPower = 0 -> PDF 0092 // ddxPower = 1 -> PDF' 0093 // (ddxPower = 2 not implemented) 0094 // Solves analytically when possible, and otherwise uses the Newton-Raphson 0095 // method to find the zero of ddxPower[PDF](x) - p. 0096 // If not found in range, returns the nearest boundary. 0097 // Beware that if x1 and x2 are not set carefully there may be multiple 0098 // solutions, and care is not taken to select a particular one among them. 0099 // Returns x2 on error 0100 G4double GetX( G4double p, G4double x1, G4double x2, G4int ddxPower = 0, 0101 G4double guess = 1.e99, G4bool bisect = true ); 0102 inline G4double EvalInverseCDF(G4double p) { return GetX(p, fX1, fX2, -1, fX1 + p*(fX2-fX1)); } 0103 G4double Bisect( G4double p, G4double x1, G4double x2 ); 0104 0105 void Dump(); 0106 0107 protected: 0108 // Checks for negative values between x1 and x2. Used by GetRandomX() 0109 G4bool HasNegativeMinimum(G4double x1, G4double x2); 0110 0111 G4double fX1; 0112 G4double fX2; 0113 std::vector<G4double> fCoefficients; 0114 G4bool fChanged; 0115 G4double fTolerance; 0116 G4int fVerbose; 0117 }; 0118 0119 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |