|
||||
File indexing completed on 2025-01-18 09:58:28
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // INCL++ intra-nuclear cascade model 0027 // Alain Boudard, CEA-Saclay, France 0028 // Joseph Cugnon, University of Liege, Belgium 0029 // Jean-Christophe David, CEA-Saclay, France 0030 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 0031 // Sylvie Leray, CEA-Saclay, France 0032 // Davide Mancusi, CEA-Saclay, France 0033 // 0034 #define INCLXX_IN_GEANT4_MODE 1 0035 0036 #include "globals.hh" 0037 0038 #ifndef G4INCLNuclearDensity_hh 0039 #define G4INCLNuclearDensity_hh 1 0040 0041 #include <vector> 0042 #include <map> 0043 // #include <cassert> 0044 #include "G4INCLThreeVector.hh" 0045 #include "G4INCLIFunction1D.hh" 0046 #include "G4INCLParticle.hh" 0047 #include "G4INCLGlobals.hh" 0048 #include "G4INCLRandom.hh" 0049 #include "G4INCLINuclearPotential.hh" 0050 #include "G4INCLInterpolationTable.hh" 0051 0052 namespace G4INCL { 0053 0054 class NuclearDensity { 0055 public: 0056 NuclearDensity(const G4int A, const G4int Z, const G4int S, InterpolationTable const * const rpCorrelationTableProton, InterpolationTable const * const rpCorrelationTableNeutron, InterpolationTable const * const rpCorrelationTableLambda); 0057 ~NuclearDensity(); 0058 0059 /// \brief Copy constructor 0060 NuclearDensity(const NuclearDensity &rhs); 0061 0062 /// \brief Assignment operator 0063 NuclearDensity &operator=(const NuclearDensity &rhs); 0064 0065 /// \brief Helper method for the assignment operator 0066 void swap(NuclearDensity &rhs); 0067 0068 /** \brief Get the maximum allowed radius for a given momentum. 0069 * \param t type of the particle 0070 * \param p absolute value of the particle momentum, divided by the 0071 * relevant Fermi momentum. 0072 * \return maximum allowed radius. 0073 */ 0074 G4double getMaxRFromP(const ParticleType t, const G4double p) const; 0075 0076 G4double getMinPFromR(const ParticleType t, const G4double r) const; 0077 0078 G4double getMaximumRadius() const { return theMaximumRadius; }; 0079 0080 /** \brief The radius used for calculating the transmission coefficient. 0081 * 0082 * \return the radius 0083 */ 0084 G4double getTransmissionRadius(Particle const * const p) const { 0085 const ParticleType t = p->getType(); 0086 // assert(t!= antiLambda && t!=antiNeutron && t!=Neutron && t!=PiZero && t!=DeltaZero && t!=Eta && t!=Omega && t!=EtaPrime && t!=Photon && t!= Lambda && t!=SigmaZero && t!=KZero && t!=KZeroBar && t!=KShort && t!=KLong); // no neutral particles here 0087 if(t==Composite) { 0088 return transmissionRadius[t] + 0089 ParticleTable::getNuclearRadius(t, p->getA(), p->getZ()); 0090 } else 0091 return transmissionRadius[t]; 0092 }; 0093 0094 /** \brief The radius used for calculating the transmission coefficient. 0095 * 0096 * \return the radius 0097 */ 0098 G4double getTransmissionRadius(ParticleType type) const { 0099 // assert(type!=Composite); 0100 return transmissionRadius[type]; 0101 }; 0102 0103 /// \brief Get the mass number. 0104 G4int getA() const { return theA; } 0105 0106 /// \brief Get the charge number. 0107 G4int getZ() const { return theZ; } 0108 0109 /// \brief Get the strange number. 0110 G4int getS() const { return theS; } 0111 0112 G4double getProtonNuclearRadius() const { return theProtonNuclearRadius; } 0113 void setProtonNuclearRadius(const G4double r) { theProtonNuclearRadius = r; } 0114 0115 private: 0116 0117 /** \brief Initialize the transmission radius. */ 0118 void initializeTransmissionRadii(); 0119 0120 G4int theA, theZ, theS; 0121 G4double theMaximumRadius; 0122 /// \brief Represents INCL4.5's R0 variable 0123 G4double theProtonNuclearRadius; 0124 0125 /* \brief map of transmission radii per particle type */ 0126 G4double transmissionRadius[UnknownParticle]; 0127 0128 InterpolationTable const *rFromP[UnknownParticle]; 0129 InterpolationTable const *pFromR[UnknownParticle]; 0130 }; 0131 0132 } 0133 0134 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |