Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:27

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // INCL++ intra-nuclear cascade model
0027 // Alain Boudard, CEA-Saclay, France
0028 // Joseph Cugnon, University of Liege, Belgium
0029 // Jean-Christophe David, CEA-Saclay, France
0030 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
0031 // Sylvie Leray, CEA-Saclay, France
0032 // Davide Mancusi, CEA-Saclay, France
0033 //
0034 #define INCLXX_IN_GEANT4_MODE 1
0035 
0036 #include "globals.hh"
0037 
0038 #ifndef KinematicsUtils_hh
0039 #define KinematicsUtils_hh 1
0040 
0041 #include "G4INCLThreeVector.hh"
0042 #include "G4INCLParticle.hh"
0043 #include "G4INCLNucleus.hh"
0044 #include "G4INCLParticleSpecies.hh"
0045 
0046 namespace G4INCL {
0047 
0048   namespace KinematicsUtils {
0049 
0050     G4double fiveParFit(const G4double a, const G4double b, const G4double c, const G4double d, const G4double e, const G4double x);
0051     G4double compute_xs(const std::vector<G4double> coefficients, const G4double pLab);
0052 
0053     void transformToLocalEnergyFrame(Nucleus const * const n, Particle * const p);
0054     G4double getLocalEnergy(Nucleus const * const n, Particle * const p);
0055 
0056     ThreeVector makeBoostVector(Particle const * const p1, Particle const * const p2);
0057     G4double totalEnergyInCM(Particle const * const p1, Particle const * const p2);
0058     G4double squareTotalEnergyInCM(Particle const * const p1, Particle const * const p2);
0059 
0060     /** \brief gives the momentum in the CM frame of two particles.
0061      *
0062      * The formula is the following:
0063      * \f[ p_{CM}^2 = \frac{z^2 - m_1^2 m_2^2}{2 z + m_1^2 + m_2^2} \f]
0064      * where \f$z\f$ is the scalar product of the momentum four-vectors:
0065      * \f[ z = E_1 E_2 - \vec{p}_1\cdot\vec{p}_2 \f]
0066      *
0067      * \param p1 pointer to particle 1
0068      * \param p2 pointer to particle 2
0069      * \return the absolute value of the momentum of any of the two particles in
0070      * the CM frame, in MeV/c.
0071      */
0072     G4double momentumInCM(Particle const * const p1, Particle const * const p2);
0073 
0074     G4double momentumInCM(const G4double E, const G4double M1, const G4double M2);
0075 
0076     /** \brief gives the momentum in the lab frame of two particles.
0077      *
0078      * Assumes particle 1 carries all the momentum and particle 2 is at rest.
0079      *
0080      * The formula is the following:
0081      * \f[ p_{lab}^2 = \frac{s^2 - 2 s (m_1^2 + m_2^2) + {(m_1^2 - m_2^2)}^2}{4 m_2^2} \f]
0082      *
0083      * \param p1 pointer to particle 1
0084      * \param p2 pointer to particle 2
0085      * \return the absolute value of the momentum of particle 1 in the lab frame,
0086      * in MeV/c
0087      */
0088     G4double momentumInLab(Particle const * const p1, Particle const * const p2);
0089     G4double momentumInLab(const G4double s, const G4double m1, const G4double m2);
0090     G4double sumTotalEnergies(const ParticleList &);
0091     ThreeVector sumMomenta(const ParticleList &);
0092     G4double energy(const ThreeVector &p, const G4double m);
0093     G4double invariantMass(const G4double E, const ThreeVector & p);
0094     G4double squareInvariantMass(const G4double E, const ThreeVector & p);
0095     G4double gammaFromKineticEnergy(const ParticleSpecies &p, const G4double EKin);
0096   }
0097 }
0098 
0099 #endif