Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:27

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // INCL++ intra-nuclear cascade model
0027 // Alain Boudard, CEA-Saclay, France
0028 // Joseph Cugnon, University of Liege, Belgium
0029 // Jean-Christophe David, CEA-Saclay, France
0030 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
0031 // Sylvie Leray, CEA-Saclay, France
0032 // Davide Mancusi, CEA-Saclay, France
0033 //
0034 #define INCLXX_IN_GEANT4_MODE 1
0035 
0036 #include "globals.hh"
0037 
0038 /* \file G4INCLInteractionAvatar.hh
0039  * \brief Virtual class for interaction avatars.
0040  *
0041  * This class is inherited by decay and collision avatars. The goal is to
0042  * provide a uniform treatment of common physics, such as Pauli blocking,
0043  * enforcement of energy conservation, etc.
0044  *
0045  *  \date Mar 1st, 2011
0046  * \author Davide Mancusi
0047  */
0048 
0049 #ifndef G4INCLINTERACTIONAVATAR_HH_
0050 #define G4INCLINTERACTIONAVATAR_HH_
0051 
0052 #include "G4INCLIAvatar.hh"
0053 #include "G4INCLNucleus.hh"
0054 #include "G4INCLFinalState.hh"
0055 #include "G4INCLRootFinder.hh"
0056 #include "G4INCLKinematicsUtils.hh"
0057 #include "G4INCLAllocationPool.hh"
0058 
0059 namespace G4INCL {
0060 
0061   class InteractionAvatar : public G4INCL::IAvatar {
0062     public:
0063       InteractionAvatar(G4double, G4INCL::Nucleus*, G4INCL::Particle*);
0064       InteractionAvatar(G4double, G4INCL::Nucleus*, G4INCL::Particle*, G4INCL::Particle*);
0065       virtual ~InteractionAvatar();
0066 
0067       /// \brief Target accuracy in the determination of the local-energy Q-value
0068       static const G4double locEAccuracy;
0069       /// \brief Max number of iterations for the determination of the local-energy Q-value
0070       static const G4int maxIterLocE;
0071 
0072       /// \brief Release the memory allocated for the backup particles
0073       static void deleteBackupParticles();
0074 
0075     protected:
0076       virtual G4INCL::IChannel* getChannel() = 0;
0077 
0078       G4bool bringParticleInside(Particle * const p);
0079 
0080       /** \brief Apply local-energy transformation, if appropriate
0081        *
0082        * \param p particle to apply the transformation to
0083        */
0084       void preInteractionLocalEnergy(Particle * const p);
0085 
0086       /** \brief Store the state of the particles before the interaction
0087        *
0088        * If the interaction cannot be realised for any reason, we will need to
0089        * restore the particle state as it was before. This is done by calling
0090        * the restoreParticles() method.
0091        */
0092       void preInteractionBlocking();
0093 
0094       void preInteraction();
0095       void postInteraction(FinalState *);
0096 
0097       /** \brief Restore the state of both particles.
0098        *
0099        * The state must first be stored by calling preInteractionBlocking().
0100        */
0101       void restoreParticles() const;
0102 
0103       /// \brief true if the given avatar should use local energy
0104       G4bool shouldUseLocalEnergy() const;
0105 
0106       Nucleus *theNucleus;
0107       Particle *particle1, *particle2;
0108       static G4ThreadLocal Particle *backupParticle1, *backupParticle2;
0109       ThreeVector boostVector;
0110       G4double oldTotalEnergy, oldXSec;
0111       G4bool isPiN;
0112       G4double weight;
0113 
0114     private:
0115       /// \brief RootFunctor-derived object for enforcing energy conservation in N-N.
0116       class ViolationEMomentumFunctor : public RootFunctor {
0117         public:
0118           /** \brief Prepare for calling the () operator and scaleParticleMomenta
0119            *
0120            * The constructor sets the private class members.
0121            */
0122           ViolationEMomentumFunctor(Nucleus * const nucleus, ParticleList const &modAndCre, const G4double totalEnergyBeforeInteraction, ThreeVector const &boost, const G4bool localE);
0123           virtual ~ViolationEMomentumFunctor();
0124 
0125           /** \brief Compute the energy-conservation violation.
0126            *
0127            * \param x scale factor for the particle momenta
0128            * \return the energy-conservation violation
0129            */
0130           G4double operator()(const G4double x) const;
0131 
0132           /// \brief Clean up after root finding
0133           void cleanUp(const G4bool success) const;
0134 
0135         private:
0136           /// \brief List of final-state particles.
0137           ParticleList finalParticles;
0138           /// \brief CM particle momenta, as determined by the channel.
0139           std::vector<ThreeVector> particleMomenta;
0140           /// \brief Total energy before the interaction.
0141           G4double initialEnergy;
0142           /// \brief Pointer to the nucleus
0143           Nucleus *theNucleus;
0144           /// \brief Pointer to the boost vector
0145           ThreeVector const &boostVector;
0146 
0147           /// \brief True if we should use local energy
0148           const G4bool shouldUseLocalEnergy;
0149 
0150           /** \brief Scale the momenta of the modified and created particles.
0151            *
0152            * Set the momenta of the modified and created particles to alpha times
0153            * their original momenta (stored in particleMomenta). You must call
0154            * init() before using this method.
0155            *
0156            * \param alpha scale factor
0157            */
0158           void scaleParticleMomenta(const G4double alpha) const;
0159 
0160       };
0161 
0162       /// \brief RootFunctor-derived object for enforcing energy conservation in delta production
0163       class ViolationEEnergyFunctor : public RootFunctor {
0164         public:
0165           /** \brief Prepare for calling the () operator and setParticleEnergy
0166            *
0167            * The constructor sets the private class members.
0168            */
0169           ViolationEEnergyFunctor(Nucleus * const nucleus, Particle * const aParticle, const G4double totalEnergyBeforeInteraction, const G4bool localE);
0170           virtual ~ViolationEEnergyFunctor() {}
0171 
0172           /** \brief Compute the energy-conservation violation.
0173            *
0174            * \param x scale factor for the particle energy
0175            * \return the energy-conservation violation
0176            */
0177           G4double operator()(const G4double x) const;
0178 
0179           /// \brief Clean up after root finding
0180           void cleanUp(const G4bool success) const;
0181 
0182           /** \brief Set the energy of the particle.
0183            *
0184            * \param energy
0185            */
0186           void setParticleEnergy(const G4double energy) const;
0187 
0188         private:
0189           /// \brief Total energy before the interaction.
0190           G4double initialEnergy;
0191           /// \brief Pointer to the nucleus.
0192           Nucleus *theNucleus;
0193           /// \brief The final-state particle.
0194           Particle *theParticle;
0195           /// \brief The initial energy of the particle.
0196           G4double theEnergy;
0197           /// \brief The initial momentum of the particle.
0198           ThreeVector theMomentum;
0199           /** \brief Threshold for the energy of the particle
0200            *
0201            * The particle (a delta) cannot have less than this energy.
0202            */
0203           G4double energyThreshold;
0204           /// \brief Whether we should use local energy
0205           const G4bool shouldUseLocalEnergy;
0206       };
0207 
0208       RootFunctor *violationEFunctor;
0209 
0210     protected:
0211       /** \brief Enforce energy conservation.
0212        *
0213        * Final states generated by the channels might violate energy conservation
0214        * because of different reasons (energy-dependent potentials, local
0215        * energy...). This conservation law must therefore be enforced by hand. We
0216        * do so by rescaling the momenta of the final-state particles in the CM
0217        * frame. If this turns out to be impossible, this method returns false.
0218        *
0219        * \return true if the algorithm succeeded
0220        */
0221       G4bool enforceEnergyConservation(FinalState * const fs);
0222 
0223       ParticleList modified, created, modifiedAndCreated, Destroyed, ModifiedAndDestroyed;
0224 
0225       INCL_DECLARE_ALLOCATION_POOL(InteractionAvatar)
0226   };
0227 
0228 }
0229 
0230 #endif /* G4INCLINTERACTIONAVATAR_HH_ */