|
||||
File indexing completed on 2025-01-18 09:58:27
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // INCL++ intra-nuclear cascade model 0027 // Alain Boudard, CEA-Saclay, France 0028 // Joseph Cugnon, University of Liege, Belgium 0029 // Jean-Christophe David, CEA-Saclay, France 0030 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 0031 // Sylvie Leray, CEA-Saclay, France 0032 // Davide Mancusi, CEA-Saclay, France 0033 // 0034 #define INCLXX_IN_GEANT4_MODE 1 0035 0036 #include "globals.hh" 0037 0038 /** \file G4INCLIFunction1D.hh 0039 * \brief Functor for 1-dimensional mathematical functions 0040 * 0041 * \date 16 July 2012 0042 * \author Davide Mancusi 0043 */ 0044 0045 #ifndef G4INCLIFUNCTION1D_HH_ 0046 #define G4INCLIFUNCTION1D_HH_ 1 0047 0048 #include <vector> 0049 0050 namespace G4INCL { 0051 0052 // Forward declaration 0053 class InterpolationTable; 0054 0055 /** 0056 * 1D function interface 0057 */ 0058 class IFunction1D { 0059 public: 0060 IFunction1D() : 0061 xMin(0.), 0062 xMax(0.) 0063 {}; 0064 IFunction1D(const G4double x0, const G4double x1) : 0065 xMin(x0), 0066 xMax(x1) 0067 {}; 0068 0069 virtual ~IFunction1D() {}; 0070 0071 /// \brief Return the minimum allowed value of the independent variable 0072 virtual inline G4double getXMinimum() const { return xMin; } 0073 0074 /// \brief Return the maximum allowed value of the independent variable 0075 virtual inline G4double getXMaximum() const { return xMax; } 0076 0077 /// \brief Compute the value of the function 0078 virtual G4double operator()(const G4double x) const = 0; 0079 0080 /** \brief Integrate the function between two values 0081 * 0082 * \param x0 lower integration bound 0083 * \param x1 upper integration bound 0084 * \param step largest integration step size; if <0, 45 steps will be used 0085 * \return \f$\int_{x_0}^{x_1} f(x) dx\f$ 0086 */ 0087 virtual G4double integrate(const G4double x0, const G4double x1, const G4double step=-1.) const; 0088 0089 /// \brief Return a pointer to the (numerical) primitive to this function 0090 IFunction1D *primitive() const; 0091 0092 /// \brief Typedef to simplify the syntax of inverseCDFTable 0093 typedef G4double (* const ManipulatorFunc)(const G4double); 0094 0095 /** \brief Return a pointer to the inverse of the CDF of this function 0096 * 0097 * The function parameter fWrap is wrapped around the return value of 0098 * operator(). If fWrap=NULL (default), fWrap=identity. 0099 */ 0100 InterpolationTable *inverseCDFTable(ManipulatorFunc fWrap=0, const G4int nNodes=60) const; 0101 0102 protected: 0103 /// \brief Minimum value of the independent variable 0104 G4double xMin; 0105 /// \brief Maximum value of the independent variable 0106 G4double xMax; 0107 0108 private: 0109 /// \brief Coefficients for numerical integration 0110 static const G4double integrationCoefficients[]; 0111 }; 0112 0113 } 0114 0115 #endif // G4INCLIFUNCTION1D_HH_
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |