|
||||
File indexing completed on 2025-01-18 09:58:25
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // INCL++ intra-nuclear cascade model 0027 // Alain Boudard, CEA-Saclay, France 0028 // Joseph Cugnon, University of Liege, Belgium 0029 // Jean-Christophe David, CEA-Saclay, France 0030 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 0031 // Sylvie Leray, CEA-Saclay, France 0032 // Davide Mancusi, CEA-Saclay, France 0033 // 0034 #define INCLXX_IN_GEANT4_MODE 1 0035 0036 #include "globals.hh" 0037 0038 /** \file G4INCLCoulombNonRelativistic.hh 0039 * \brief Class for non-relativistic Coulomb distortion. 0040 * 0041 * \date 14 February 2011 0042 * \author Davide Mancusi 0043 */ 0044 0045 #ifndef G4INCLCOULOMBNONRELATIVISTIC_HH_ 0046 #define G4INCLCOULOMBNONRELATIVISTIC_HH_ 0047 0048 #include "G4INCLParticle.hh" 0049 #include "G4INCLNucleus.hh" 0050 #include "G4INCLICoulomb.hh" 0051 #include "G4INCLCoulombNone.hh" 0052 #include "G4INCLGlobals.hh" 0053 0054 namespace G4INCL { 0055 0056 class CoulombNonRelativistic : public ICoulomb { 0057 public: 0058 CoulombNonRelativistic() {} 0059 virtual ~CoulombNonRelativistic() {} 0060 0061 /** \brief Modify the momentum of the particle and position it on the 0062 * surface of the nucleus. 0063 * 0064 * This method performs non-relativistic distortion. 0065 * 0066 * \param p incoming particle 0067 * \param n distorting nucleus 0068 **/ 0069 ParticleEntryAvatar *bringToSurface(Particle * const p, Nucleus * const n) const; 0070 0071 /** \brief Modify the momentum of the incoming cluster and position it on 0072 * the surface of the nucleus. 0073 * 0074 * This method performs non-relativistic distortion. The momenta of the 0075 * particles that compose the cluster are also distorted. 0076 * 0077 * \param c incoming cluster 0078 * \param n distorting nucleus 0079 **/ 0080 IAvatarList bringToSurface(Cluster * const c, Nucleus * const n) const; 0081 0082 /** \brief Modify the momenta of the outgoing particles. 0083 * 0084 * This method performs non-relativistic distortion. 0085 * 0086 * \param pL list of outgoing particles 0087 * \param n distorting nucleus 0088 */ 0089 void distortOut(ParticleList const &pL, Nucleus const * const n) const; 0090 0091 /** \brief Return the maximum impact parameter for Coulomb-distorted 0092 * trajectories. **/ 0093 G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const * 0094 const n) const; 0095 0096 private: 0097 /// \brief Return the minimum distance of approach in a head-on collision (b=0). 0098 G4double minimumDistance(ParticleSpecies const &p, const G4double kineticEnergy, Nucleus const * const n) const { 0099 const G4double particleMass = ParticleTable::getTableSpeciesMass(p); 0100 const G4double nucleusMass = n->getTableMass(); 0101 const G4double reducedMass = particleMass*nucleusMass/(particleMass+nucleusMass); 0102 const G4double kineticEnergyInCM = kineticEnergy * reducedMass / particleMass; 0103 const G4double theMinimumDistance = ( kineticEnergyInCM <= 0.0 ? 0.0 : 0104 PhysicalConstants::eSquared * p.theZ * n->getZ() * particleMass 0105 / (kineticEnergyInCM * reducedMass) ); 0106 INCL_DEBUG("Minimum distance of approach due to Coulomb = " << theMinimumDistance << '\n'); 0107 return theMinimumDistance; 0108 } 0109 0110 /// \brief Return the minimum distance of approach in a head-on collision (b=0). 0111 G4double minimumDistance(Particle const * const p, Nucleus const * const n) const { 0112 return minimumDistance(p->getSpecies(), p->getKineticEnergy(), n); 0113 } 0114 0115 /** \brief Perform Coulomb deviation 0116 * 0117 * Modifies the entrance angle of the particle and its impact parameter. 0118 * Can be applied to Particles and Clusters. 0119 * 0120 * The trajectory for an asymptotic impact parameter \f$b\f$ is 0121 * parametrised as follows: 0122 * \f[ 0123 * r(\theta) = \frac{(1-e^2)r_0/2}{1-e \sin(\theta-\theta_R/2)}, 0124 * \f] 0125 * here \f$e\f$ is the hyperbola eccentricity: 0126 * \f[ 0127 * e = \sqrt{1+4b^2/r_0^2}; 0128 * \f] 0129 * \f$\theta_R\f$ is the Rutherford scattering angle: 0130 * \f[ 0131 * \theta_R = \pi - 2\arctan\left(\frac{2b}{r_0}\right) 0132 * \f] 0133 * \f$\theta\f$ ranges from \f$\pi\f$ (initial state) to \f$\theta_R\f$ 0134 * (scattered particle) and \f$r_0\f$ is the minimum distance of approach 0135 * in a head-on collision (see the minimumDistance() method). 0136 * 0137 * \param p pointer to the Particle 0138 * \param n pointer to the Nucleus 0139 * \return false if below the barrier 0140 */ 0141 G4bool coulombDeviation(Particle * const p, Nucleus const * const n) const; 0142 0143 /** \brief Get the Coulomb radius for a given particle 0144 * 0145 * That's the radius of the sphere that the Coulomb trajectory of the 0146 * incoming particle should intersect. The intersection point is used to 0147 * determine the effective impact parameter of the trajectory and the new 0148 * entrance angle. 0149 * 0150 * If the particle is not a Cluster, the Coulomb radius reduces to the 0151 * surface radius. We use a parametrisation for d, t, He3 and alphas. For 0152 * heavier clusters we fall back to the surface radius. 0153 * 0154 * \param p the particle species 0155 * \param n the deflecting nucleus 0156 * \return Coulomb radius 0157 */ 0158 G4double getCoulombRadius(ParticleSpecies const &p, Nucleus const * const n) const; 0159 0160 /// \brief Internal CoulombNone slave to generate the avatars 0161 CoulombNone theCoulombNoneSlave; 0162 }; 0163 } 0164 0165 #endif /* G4INCLCOULOMBNONRELATIVISTIC_HH_ */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |