Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:23

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // G4HelixSimpleRunge
0027 //
0028 // Class description:
0029 //
0030 //  Helix Simple Runge-Kutta stepper for magnetic field:
0031 //        x_1 = x_0 + h * ( dx( t_0+h/2, x_0 + h/2 * dx( t_0, x_0) ) )
0032 //
0033 //  Second order solver.
0034 //  Take the derivative at a position to be assumed at the middle of the
0035 //  Step and add it to the current position.
0036 
0037 // Author: W. Wander <wwc@mit.edu>, 03.12.1998
0038 // -------------------------------------------------------------------
0039 #ifndef G4HELIXSIMPLERUNGE_HH
0040 #define G4HELIXSIMPLERUNGE_HH
0041 
0042 #include "G4MagHelicalStepper.hh"
0043 
0044 class G4HelixSimpleRunge : public G4MagHelicalStepper
0045 {
0046   public:
0047 
0048     G4HelixSimpleRunge(G4Mag_EqRhs* EqRhs);
0049    ~G4HelixSimpleRunge() override;
0050   
0051     void  DumbStepper( const G4double y[],
0052                              G4ThreeVector Bfld,
0053                              G4double      h,
0054                              G4double      yout[] ) override;
0055 
0056     inline G4int IntegratorOrder() const override { return 2; }
0057 };
0058 
0059 #endif