Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:23

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // G4HelixExplicitEuler
0027 //
0028 // Class description:
0029 //
0030 // Helix Explicit Euler: x_1 = x_0 + helix(h)
0031 // with helix(h) being a helix piece of length h.
0032 // A simple approach for solving linear differential equations.
0033 // Take the current derivative and add it to the current position.
0034 
0035 // Author: W.Wander <wwc@mit.edu>, 12.09.1997
0036 // -------------------------------------------------------------------
0037 #ifndef G4HELIXEXPLICITEULER_HH
0038 #define G4HELIXEXPLICITEULER_HH
0039 
0040 #include "G4MagHelicalStepper.hh"
0041 
0042 class G4HelixExplicitEuler : public G4MagHelicalStepper
0043 {
0044   public:
0045 
0046     G4HelixExplicitEuler(G4Mag_EqRhs* EqRhs);
0047    ~G4HelixExplicitEuler() override;
0048 
0049     void Stepper( const G4double y[],
0050                   const G4double*,
0051                         G4double h,
0052                         G4double yout[],
0053                         G4double yerr[]  ) override; 
0054 
0055     void DumbStepper( const G4double y[],
0056                             G4ThreeVector  Bfld,
0057                             G4double       h,
0058                             G4double       yout[]) override;
0059    
0060     G4double DistChord() const override;
0061 
0062     inline G4int IntegratorOrder() const override { return 1; }
0063 };
0064 
0065 #endif