|
||||
File indexing completed on 2025-01-18 09:58:19
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // G4GaussLegendreQ 0027 // 0028 // Class description: 0029 // 0030 // Class for Gauss-Legendre integration method 0031 // Roots of ortogonal polynoms and corresponding weights are calculated based on 0032 // iteration method (by bisection Newton algorithm). Constant values for initial 0033 // approximations were derived from the book: 0034 // M. Abramowitz, I. Stegun, Handbook of mathematical functions, 0035 // DOVER Publications INC, New York 1965 ; chapters 9, 10, and 22. 0036 0037 // Author: V.Grichine, 13.05.1997 0038 // -------------------------------------------------------------------- 0039 #ifndef G4GAUSSLEGENDREQ_HH 0040 #define G4GAUSSLEGENDREQ_HH 1 0041 0042 #include "G4VGaussianQuadrature.hh" 0043 0044 class G4GaussLegendreQ : public G4VGaussianQuadrature 0045 { 0046 public: 0047 explicit G4GaussLegendreQ(function pFunction); 0048 0049 G4GaussLegendreQ(function pFunction, G4int nLegendre); 0050 // Constructor for GaussLegendre quadrature method. The value nLegendre set 0051 // the accuracy required, i.e the number of points where the function 0052 // pFunction will be evaluated during integration. The constructor creates 0053 // the arrays for abscissas and weights that used in Gauss-Legendre 0054 // quadrature method. 0055 // The values a and b are the limits of integration of the pFunction. 0056 0057 G4GaussLegendreQ(const G4GaussLegendreQ&) = delete; 0058 G4GaussLegendreQ& operator=(const G4GaussLegendreQ&) = delete; 0059 0060 G4double Integral(G4double a, G4double b) const; 0061 // Returns the integral of the function to be pointed by fFunction between a 0062 // and b, by 2*fNumber point Gauss-Legendre integration: the function is 0063 // evaluated exactly 2*fNumber Times at interior points in the range of 0064 // integration. Since the weights and abscissas are, in this case, symmetric 0065 // around the midpoint of the range of integration, there are actually only 0066 // fNumber distinct values of each. 0067 0068 G4double QuickIntegral(G4double a, G4double b) const; 0069 // Returns the integral of the function to be pointed by fFunction between a 0070 // and b, by ten point Gauss-Legendre integration: the function is evaluated 0071 // exactly ten Times at interior points in the range of integration. Since 0072 // the weights and abscissas are, in this case, symmetric around the midpoint 0073 // of the range of integration, there are actually only five distinct values 0074 // of each. 0075 0076 G4double AccurateIntegral(G4double a, G4double b) const; 0077 // Returns the integral of the function to be pointed by fFunction between a 0078 // and b, by 96 point Gauss-Legendre integration: the function is evaluated 0079 // exactly ten Times at interior points in the range of integration. Since 0080 // the weights and abscissas are, in this case, symmetric around the midpoint 0081 // of the range of integration, there are actually only five distinct values 0082 // of each. 0083 }; 0084 0085 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |