|
||||
File indexing completed on 2025-01-18 09:58:19
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // 0027 // 0028 // Class description: 0029 // 0030 // Class for realization of Gauss-Laguerre quadrature method 0031 // Roots of ortogonal polynoms and corresponding weights are calculated based on 0032 // iteration method (by bisection Newton algorithm). Constant values for initial 0033 // approximations were derived from the book: 0034 // M. Abramowitz, I. Stegun, Handbook of mathematical functions, 0035 // DOVER Publications INC, New York 1965 ; chapters 9, 10, and 22. 0036 0037 // Author: V.Grichine, 13.05.1997 0038 // -------------------------------------------------------------------- 0039 #ifndef G4GAUSSLAGUERREQ_HH 0040 #define G4GAUSSLAGUERREQ_HH 1 0041 0042 #include "G4VGaussianQuadrature.hh" 0043 0044 class G4GaussLaguerreQ : public G4VGaussianQuadrature 0045 { 0046 public: 0047 G4GaussLaguerreQ(function pFunction, G4double alpha, G4int nLaguerre); 0048 // Constructor for Gauss-Laguerre quadrature method: integral from zero to 0049 // infinity of std::pow(x,alpha)*std::exp(-x)*f(x). The value of nLaguerre 0050 // sets the accuracy. 0051 // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and 0052 // fWeight[0,..,nLaguerre-1] . The function GaussLaguerre(f) should be 0053 // called then with any f. 0054 0055 G4GaussLaguerreQ(const G4GaussLaguerreQ&) = delete; 0056 G4GaussLaguerreQ& operator=(const G4GaussLaguerreQ&) = delete; 0057 0058 G4double Integral() const; 0059 // Gauss-Laguerre method for integration of 0060 // std::pow(x,alpha)*std::exp(-x)*pFunction(x) from zero up to infinity. 0061 // pFunction is evaluated in fNumber points for which fAbscissa[i] and 0062 // fWeight[i] arrays were created in constructor. 0063 }; 0064 0065 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |