Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:19

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 //
0027 //
0028 // Class description:
0029 //
0030 // Class for realization of Gauss-Laguerre quadrature method
0031 // Roots of ortogonal polynoms and corresponding weights are calculated based on
0032 // iteration method (by bisection Newton algorithm). Constant values for initial
0033 // approximations were derived from the book:
0034 //   M. Abramowitz, I. Stegun, Handbook of mathematical functions,
0035 //   DOVER Publications INC, New York 1965 ; chapters 9, 10, and 22.
0036 
0037 // Author: V.Grichine, 13.05.1997
0038 // --------------------------------------------------------------------
0039 #ifndef G4GAUSSLAGUERREQ_HH
0040 #define G4GAUSSLAGUERREQ_HH 1
0041 
0042 #include "G4VGaussianQuadrature.hh"
0043 
0044 class G4GaussLaguerreQ : public G4VGaussianQuadrature
0045 {
0046  public:
0047   G4GaussLaguerreQ(function pFunction, G4double alpha, G4int nLaguerre);
0048   // Constructor for Gauss-Laguerre quadrature method: integral from zero to
0049   // infinity of std::pow(x,alpha)*std::exp(-x)*f(x). The value of nLaguerre
0050   // sets the accuracy.
0051   // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and
0052   // fWeight[0,..,nLaguerre-1] . The function GaussLaguerre(f) should be
0053   // called then with any f.
0054 
0055   G4GaussLaguerreQ(const G4GaussLaguerreQ&) = delete;
0056   G4GaussLaguerreQ& operator=(const G4GaussLaguerreQ&) = delete;
0057 
0058   G4double Integral() const;
0059   // Gauss-Laguerre method for integration of
0060   // std::pow(x,alpha)*std::exp(-x)*pFunction(x) from zero up to infinity.
0061   // pFunction is evaluated in fNumber points for which fAbscissa[i] and
0062   // fWeight[i] arrays were created in constructor.
0063 };
0064 
0065 #endif