Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:15

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // G4ExactHelixStepper
0027 //
0028 // Class description:
0029 //
0030 // Concrete class for particle motion in constant magnetic field.
0031 // Helix a-la-Explicity Euler: x_1 = x_0 + helix(h)
0032 // with helix(h) being a helix piece of length h.
0033 // simplest approach for solving linear differential equations.
0034 // Take the current derivative and add it to the current position.
0035 //
0036 // As the field is assumed constant, an error is not calculated.
0037 
0038 // Author: J.Apostolakis, 28.01.2005.
0039 //         Implementation adapted from ExplicitEuler by W.Wander 
0040 // --------------------------------------------------------------------
0041 #ifndef G4EXACTHELIXSTEPPER_HH
0042 #define G4EXACTHELIXSTEPPER_HH
0043 
0044 #include "G4Types.hh"
0045 #include "G4ThreeVector.hh"
0046 
0047 #include "G4MagIntegratorStepper.hh"
0048 #include "G4MagHelicalStepper.hh"
0049 #include "G4Mag_EqRhs.hh"
0050 
0051 class G4ExactHelixStepper : public G4MagHelicalStepper
0052 {
0053   public:
0054 
0055     G4ExactHelixStepper(G4Mag_EqRhs* EqRhs);
0056    ~G4ExactHelixStepper() override;
0057   
0058     G4ExactHelixStepper(const G4ExactHelixStepper&) = delete;
0059     G4ExactHelixStepper& operator=(const G4ExactHelixStepper&) = delete;
0060 
0061     void Stepper( const G4double y[],
0062                   const G4double dydx[],
0063                         G4double h,
0064                         G4double yout[],
0065                         G4double yerr[]  ) override;
0066       // Step 'integration' for step size 'h'
0067       // Provides helix starting at y[0 to 6]
0068       // Outputs yout[] and ZERO estimated error yerr[]=0.
0069   
0070     void DumbStepper( const G4double y[],
0071                             G4ThreeVector Bfld,
0072                             G4double h,
0073                             G4double yout[] ) override;
0074       // Performs a 'dump' Step without error calculation.
0075   
0076     G4double DistChord() const override;
0077       // Estimate maximum distance of curved solution and chord ... 
0078 
0079     G4int IntegratorOrder() const override;
0080 
0081   private:
0082 
0083     G4ThreeVector fBfieldValue;
0084       // Initial value of field at last step
0085 };
0086 
0087 #endif