Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:06

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 
0026 /*
0027  * Interface to calculation of the Fermi density effect as per the method
0028  * described in:
0029  *
0030  *   R. M. Sternheimer, M. J. Berger, and S. M. Seltzer. Density
0031  *   effect for the ionization loss of charged particles in various sub-
0032  *   stances. Atom. Data Nucl. Data Tabl., 30:261, 1984.
0033  *
0034  * Which (among other Sternheimer references) builds on:
0035  *
0036  *   R. M. Sternheimer. The density effect for ionization loss in
0037  *   materials. Phys. Rev., 88:851­859, 1952.
0038  *
0039  * The returned values of delta are directly from the Sternheimer calculation,
0040  * and not Sternheimer's popular three-part approximate parameterization
0041  * introduced in the same paper.
0042  *
0043  * Author: Matthew Strait <straitm@umn.edu> 2019
0044  */
0045 
0046 #ifndef G4DensityEffectCalculator_HH
0047 #define G4DensityEffectCalculator_HH
0048 
0049 #include "globals.hh"
0050 
0051 class G4Material;
0052 
0053 class G4DensityEffectCalculator
0054 {
0055  public:
0056   G4DensityEffectCalculator(const G4Material*, G4int);
0057   ~G4DensityEffectCalculator();
0058 
0059   // The Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma).
0060   G4double ComputeDensityCorrection(G4double x);
0061 
0062  private:
0063   /*
0064    * Given a material defined in 'par' with a plasma energy, mean excitation
0065    * energy, and set of atomic energy levels ("oscillator frequencies") with
0066    * occupation fractions ("oscillation strengths"), solve for the Sternheimer
0067    * adjustment factor (Sternheimer 1984 eq 8) and record (into 'par') the values
0068    * of the adjusted oscillator frequencies and Sternheimer constants l_i.
0069    * After doing this, 'par' is ready for a calculation of delta for an
0070    * arbitrary particle energy.  Returns true on success, false on failure.
0071    */
0072   G4double FermiDeltaCalculation(G4double x);
0073 
0074   G4double Newton(G4double x0, G4bool first);
0075 
0076   G4double DFRho(G4double);
0077 
0078   G4double FRho(G4double);
0079 
0080   G4double DEll(G4double);
0081 
0082   G4double Ell(G4double);
0083 
0084   G4double DeltaOnceSolved(G4double);
0085 
0086   const G4Material* fMaterial;
0087   G4int fVerbose{0};
0088   G4int fWarnings{0};
0089 
0090   // Number of energy levels.  If a single element, this is the number
0091   // of subshells.  If several elements, this is the sum of the number
0092   // of subshells.  In principle, could include levels for molecular
0093   // orbitals or other non-atomic states.  The last level is always
0094   // the conduction band.  If the material is an insulator, set the
0095   // oscillator strength for that level to zero and the energy to
0096   // any value.
0097   const G4int nlev;
0098 
0099   G4double fConductivity;
0100 
0101   // Current Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma).
0102   G4double sternx;
0103 
0104   // The plasma energy of the material in eV, which is simply
0105   // 28.816 sqrt(density Z/A), with density in g/cc.
0106   G4double plasmaE;
0107 
0108   // The mean excitation energy of the material in eV, i.e. the 'I' in the
0109   // Bethe energy loss formula.
0110   G4double meanexcite;
0111 
0112   // Sternheimer's "oscillator strengths", which are simply the fraction
0113   // of electrons in a given energy level.  For a single element, this is
0114   // the fraction of electrons in a subshell.  For a compound or mixture,
0115   // it is weighted by the number fraction of electrons contributed by
0116   // each element, e.g. for water, oxygen's electrons are given 8/10 of the
0117   // weight.
0118   G4double* sternf;
0119 
0120   // Energy levels.  Can be found for free atoms in, e.g., T. A. Carlson.
0121   // Photoelectron and Auger Spectroscopy. Plenum Press, New York and London,
0122   // 1985. Available in a convenient form in G4AtomicShells.cc.
0123   //
0124   // Sternheimer 1984 implies that the energy level for conduction electrons
0125   // (the final element of this array) should be set to zero, although the
0126   // computation could be run with other values.
0127   G4double* levE;
0128 
0129   /***** Results of intermediate calculations *****/
0130 
0131   // The Sternheimer parameters l_i which appear in Sternheimer 1984 eq(1).
0132   G4double* sternl;
0133 
0134   // The adjusted energy levels, as found using Sternheimer 1984 eq(8).
0135   G4double* sternEbar;
0136 };
0137 
0138 #endif