|
||||
File indexing completed on 2025-01-18 09:58:06
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 0026 /* 0027 * Interface to calculation of the Fermi density effect as per the method 0028 * described in: 0029 * 0030 * R. M. Sternheimer, M. J. Berger, and S. M. Seltzer. Density 0031 * effect for the ionization loss of charged particles in various sub- 0032 * stances. Atom. Data Nucl. Data Tabl., 30:261, 1984. 0033 * 0034 * Which (among other Sternheimer references) builds on: 0035 * 0036 * R. M. Sternheimer. The density effect for ionization loss in 0037 * materials. Phys. Rev., 88:851859, 1952. 0038 * 0039 * The returned values of delta are directly from the Sternheimer calculation, 0040 * and not Sternheimer's popular three-part approximate parameterization 0041 * introduced in the same paper. 0042 * 0043 * Author: Matthew Strait <straitm@umn.edu> 2019 0044 */ 0045 0046 #ifndef G4DensityEffectCalculator_HH 0047 #define G4DensityEffectCalculator_HH 0048 0049 #include "globals.hh" 0050 0051 class G4Material; 0052 0053 class G4DensityEffectCalculator 0054 { 0055 public: 0056 G4DensityEffectCalculator(const G4Material*, G4int); 0057 ~G4DensityEffectCalculator(); 0058 0059 // The Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma). 0060 G4double ComputeDensityCorrection(G4double x); 0061 0062 private: 0063 /* 0064 * Given a material defined in 'par' with a plasma energy, mean excitation 0065 * energy, and set of atomic energy levels ("oscillator frequencies") with 0066 * occupation fractions ("oscillation strengths"), solve for the Sternheimer 0067 * adjustment factor (Sternheimer 1984 eq 8) and record (into 'par') the values 0068 * of the adjusted oscillator frequencies and Sternheimer constants l_i. 0069 * After doing this, 'par' is ready for a calculation of delta for an 0070 * arbitrary particle energy. Returns true on success, false on failure. 0071 */ 0072 G4double FermiDeltaCalculation(G4double x); 0073 0074 G4double Newton(G4double x0, G4bool first); 0075 0076 G4double DFRho(G4double); 0077 0078 G4double FRho(G4double); 0079 0080 G4double DEll(G4double); 0081 0082 G4double Ell(G4double); 0083 0084 G4double DeltaOnceSolved(G4double); 0085 0086 const G4Material* fMaterial; 0087 G4int fVerbose{0}; 0088 G4int fWarnings{0}; 0089 0090 // Number of energy levels. If a single element, this is the number 0091 // of subshells. If several elements, this is the sum of the number 0092 // of subshells. In principle, could include levels for molecular 0093 // orbitals or other non-atomic states. The last level is always 0094 // the conduction band. If the material is an insulator, set the 0095 // oscillator strength for that level to zero and the energy to 0096 // any value. 0097 const G4int nlev; 0098 0099 G4double fConductivity; 0100 0101 // Current Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma). 0102 G4double sternx; 0103 0104 // The plasma energy of the material in eV, which is simply 0105 // 28.816 sqrt(density Z/A), with density in g/cc. 0106 G4double plasmaE; 0107 0108 // The mean excitation energy of the material in eV, i.e. the 'I' in the 0109 // Bethe energy loss formula. 0110 G4double meanexcite; 0111 0112 // Sternheimer's "oscillator strengths", which are simply the fraction 0113 // of electrons in a given energy level. For a single element, this is 0114 // the fraction of electrons in a subshell. For a compound or mixture, 0115 // it is weighted by the number fraction of electrons contributed by 0116 // each element, e.g. for water, oxygen's electrons are given 8/10 of the 0117 // weight. 0118 G4double* sternf; 0119 0120 // Energy levels. Can be found for free atoms in, e.g., T. A. Carlson. 0121 // Photoelectron and Auger Spectroscopy. Plenum Press, New York and London, 0122 // 1985. Available in a convenient form in G4AtomicShells.cc. 0123 // 0124 // Sternheimer 1984 implies that the energy level for conduction electrons 0125 // (the final element of this array) should be set to zero, although the 0126 // computation could be run with other values. 0127 G4double* levE; 0128 0129 /***** Results of intermediate calculations *****/ 0130 0131 // The Sternheimer parameters l_i which appear in Sternheimer 1984 eq(1). 0132 G4double* sternl; 0133 0134 // The adjusted energy levels, as found using Sternheimer 1984 eq(8). 0135 G4double* sternEbar; 0136 }; 0137 0138 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |