Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:05

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // G4DataInterpolation
0027 //
0028 // Class description:
0029 //
0030 // The class consists of some methods for data interpolations and
0031 // extrapolations. The methods based mainly on recommendations given in the
0032 // book: An introduction to NUMERICAL METHODS IN C++, B.H. Flowers,
0033 //       Claredon Press, Oxford, 1995.
0034 
0035 // Author: V.Grichine, 03.04.1997
0036 // --------------------------------------------------------------------
0037 #ifndef G4DATAINTERPOLATION_HH
0038 #define G4DATAINTERPOLATION_HH 1
0039 
0040 #include "globals.hh"
0041 
0042 class G4DataInterpolation
0043 {
0044  public:
0045   G4DataInterpolation(G4double pX[], G4double pY[], G4int number);
0046   // Constructor for initializing data members.
0047 
0048   G4DataInterpolation(G4double pX[], G4double pY[], G4int number,
0049                       G4double pFirstDerStart, G4double pFirstDerFinish);
0050   // Constructor for cubic spline interpolation. It creates fSecond Deivative
0051   // array as well as fArgument and fFunction.
0052 
0053   ~G4DataInterpolation();
0054   // Destructor deletes dynamically created arrays for data members: fArgument,
0055   // fFunction and fSecondDerivative, all have dimension of fNumber.
0056 
0057   G4DataInterpolation(const G4DataInterpolation&) = delete;
0058   G4DataInterpolation& operator=(const G4DataInterpolation&) = delete;
0059   // Copy constructor and assignement operator not allowed.
0060 
0061   G4double PolynomInterpolation(G4double pX, G4double& deltaY) const;
0062   // This function returns the value P(pX), where P(x) is polynom of fNumber-1
0063   // degree such that P(fArgument[i]) = fFunction[i], for i = 0, ..., fNumber-1.
0064 
0065   void PolIntCoefficient(G4double cof[]) const;
0066   // Given arrays fArgument[0,..,fNumber-1] and fFunction[0,..,fNumber-1], this
0067   // function calculates an array of coefficients.
0068   // The coefficients don't provide usually (fNumber>10) better accuracy for
0069   // polynom interpolation, as compared with PolynomInterpolation() function.
0070   // They could be used instead for derivate calculations and some other
0071   // applications.
0072 
0073   G4double RationalPolInterpolation(G4double pX, G4double& deltaY) const;
0074   // The function returns diagonal rational function (Bulirsch and Stoer
0075   // algorithm of Neville type) Pn(x)/Qm(x) where P and Q are polynoms.
0076   // Tests showed the method is not stable and hasn't advantage if compared
0077   // with polynomial interpolation.
0078 
0079   G4double CubicSplineInterpolation(G4double pX) const;
0080   // Cubic spline interpolation in point pX for function given by the table:
0081   // fArgument, fFunction. The constructor, which creates fSecondDerivative,
0082   // must be called before. The function works optimal, if sequential calls
0083   // are in random values of pX.
0084 
0085   G4double FastCubicSpline(G4double pX, G4int index) const;
0086   // Return cubic spline interpolation in the point pX which is located between
0087   // fArgument[index] and fArgument[index+1]. It is usually called in sequence
0088   // of known from external analysis values of index.
0089 
0090   G4int LocateArgument(G4double pX) const;
0091   // Given argument pX, returns index k, so that pX bracketed by fArgument[k]
0092   // and fArgument[k+1].
0093 
0094   void CorrelatedSearch(G4double pX, G4int& index) const;
0095   // Given a value pX, returns a value 'index' such that pX is between
0096   // fArgument[index] and fArgument[index+1]. fArgument MUST BE MONOTONIC,
0097   // either increasing or decreasing. If index = -1 or fNumber, this indicates
0098   // that pX is out of range. The value index on input is taken as the initial
0099   // approximation for index on output.
0100 
0101  private:
0102   // pointers to data table to be interpolated for y[i] and x[i] respectively
0103   G4double* fArgument = nullptr;
0104   G4double* fFunction = nullptr;
0105 
0106   G4double* fSecondDerivative = nullptr;
0107 
0108   G4int fNumber = 0;  // the corresponding table size
0109 };
0110 
0111 #endif