|
||||
File indexing completed on 2025-01-18 09:58:08
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // 0027 // Author: Mathieu Karamitros 0028 0029 // The code is developed in the framework of the ESA AO7146 0030 // 0031 // We would be very happy hearing from you, send us your feedback! :) 0032 // 0033 // In order for Geant4-DNA to be maintained and still open-source, 0034 // article citations are crucial. 0035 // If you use Geant4-DNA chemistry and you publish papers about your software, 0036 // in addition to the general paper on Geant4-DNA: 0037 // 0038 // Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178 0039 // 0040 // we would be very happy if you could please also cite the following 0041 // reference papers on chemistry: 0042 // 0043 // J. Comput. Phys. 274 (2014) 841-882 0044 // Prog. Nucl. Sci. Tec. 2 (2011) 503-508 0045 0046 #ifndef G4DNAOneStepThermalizationModel_hh 0047 #define G4DNAOneStepThermalizationModel_hh 0048 0049 #include <memory> 0050 #include "G4VEmModel.hh" 0051 0052 class G4ITNavigator; 0053 class G4Navigator; 0054 0055 namespace DNA{ 0056 namespace Penetration{ 0057 //----------------------- 0058 /* 0059 * Article: Jintana Meesungnoen, Jean-Paul Jay-Gerin, 0060 * Abdelali Filali-Mouhim, and Samlee Mankhetkorn (2002) 0061 * Low-Energy Electron Penetration Range in Liquid Water. 0062 * Radiation Research: November 2002, Vol. 158, No. 5, pp.657-660. 0063 */ 0064 struct Meesungnoen2002{ 0065 static void GetPenetration(G4double energy, 0066 G4ThreeVector& displacement); 0067 static double GetRmean(double energy); 0068 //----- 0069 // Polynomial fit of Meesungnoen, 2002 0070 static const double gCoeff[13]; 0071 }; 0072 0073 struct Meesungnoen2002_amorphous{ 0074 static void GetPenetration(G4double energy, 0075 G4ThreeVector& displacement); 0076 static double GetRmean(double energy); 0077 //----- 0078 // Polynomial fit of Meesungnoen, 2002 0079 static const double gCoeff[7]; 0080 }; 0081 0082 //----------------------- 0083 /* 0084 * Article: Kreipl M S, Friedland W, Paretzke H G (2009) Time- and 0085 * space-resolved Monte Carlo study of water radiolysis 0086 * for photon, electron and ion irradiation. 0087 * Radiat Environ Biophys 48:11-20 0088 */ 0089 0090 struct Kreipl2009{ 0091 static void GetPenetration(G4double energy, 0092 G4ThreeVector& displacement); 0093 }; 0094 0095 //----------------------- 0096 /* 0097 * Article: Terrissol M, Beaudre A (1990) Simulation of space and time 0098 * evolution of radiolytic species induced by electrons in water. 0099 * Radiat Prot Dosimetry 31:171–175 0100 */ 0101 struct Terrisol1990{ 0102 static void GetPenetration(G4double energy, 0103 G4ThreeVector& displacement); 0104 static double GetRmean(double energy); 0105 static double Get3DStdDeviation(double energy); 0106 //----- 0107 // Terrisol, 1990 0108 static const double gEnergies_T1990[11]; 0109 static const double gStdDev_T1990[11]; 0110 }; 0111 0112 //----------------------- 0113 /* 0114 * Article: Ritchie RH, Hamm RN, Turner JE, Bolch WE (1994) Interaction of 0115 * low-energy electrons with condensed matter: relevance for track 0116 * structure. 0117 * Computational approaches in molecular radiation biology, Plenum, 0118 * New York, Vol. 63, pp. 155–166 0119 * Note: also used in Ballarini et al., 2000 0120 */ 0121 struct Ritchie1994{ 0122 static void GetPenetration(G4double energy, 0123 G4ThreeVector& displacement); 0124 static double GetRmean(double energy); 0125 }; 0126 } 0127 } 0128 0129 /** 0130 * When an electron reaches the highest energy domain of 0131 * G4DNAOneStepThermalizationModel, 0132 * it is then automatically converted into a solvated electron and displace 0133 * from its original position using a published thermalization statistic. 0134 */ 0135 0136 template<typename MODEL=DNA::Penetration::Meesungnoen2002> 0137 class G4TDNAOneStepThermalizationModel : public G4VEmModel 0138 { 0139 public: 0140 using Model = MODEL; 0141 G4TDNAOneStepThermalizationModel(const G4ParticleDefinition* p = nullptr, 0142 const G4String& nam = 0143 "DNAOneStepThermalizationModel"); 0144 ~G4TDNAOneStepThermalizationModel() override; 0145 0146 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override; 0147 0148 G4double CrossSectionPerVolume(const G4Material* material, 0149 const G4ParticleDefinition* p, 0150 G4double ekin, 0151 G4double emin, 0152 G4double emax) override; 0153 0154 void SampleSecondaries(std::vector<G4DynamicParticle*>*, 0155 const G4MaterialCutsCouple*, 0156 const G4DynamicParticle*, 0157 G4double tmin, 0158 G4double maxEnergy) override; 0159 0160 inline void SetVerbose(int flag){ 0161 fVerboseLevel = flag; 0162 } 0163 0164 void GetPenetration(G4double energy, 0165 G4ThreeVector& displacement); 0166 0167 double GetRmean(double energy); 0168 0169 protected: 0170 const std::vector<G4double>* fpWaterDensity; 0171 0172 G4ParticleChangeForGamma* fpParticleChangeForGamma; 0173 G4bool fIsInitialised{false}; 0174 G4int fVerboseLevel; 0175 std::unique_ptr<G4Navigator> fpNavigator; 0176 0177 private: 0178 G4TDNAOneStepThermalizationModel& 0179 operator=(const G4TDNAOneStepThermalizationModel &right); 0180 G4TDNAOneStepThermalizationModel(const G4TDNAOneStepThermalizationModel&); 0181 }; 0182 0183 #include "G4DNAOneStepThermalizationModel.hpp" 0184 0185 using G4DNAOneStepThermalizationModel = G4TDNAOneStepThermalizationModel<DNA::Penetration::Meesungnoen2002>; 0186 0187 // typedef G4TDNAOneStepThermalizationModel<DNA::Penetration::Terrisol1990> G4DNAOneStepThermalizationModel; 0188 // Note: if you use the above distribution, it would be 0189 // better to follow the electrons down to 6 eV and only then apply 0190 // the one step thermalization 0191 0192 class G4DNASolvationModelFactory 0193 { 0194 public: 0195 /// @param penetrationType Available options: 0196 /// Meesungnoen2002, Terrisol1990, Ritchie1994 0197 static G4VEmModel* Create(const G4String& penetrationModel); 0198 0199 /// \brief One step thermalization model can be chosen via macro using 0200 /// /process/dna/e-SolvationSubType Ritchie1994 0201 /// \return Create the model defined via the command macro 0202 /// /process/dna/e-SolvationSubType 0203 /// In case the command is unused, it returns the default model set in 0204 /// G4EmParameters. 0205 static G4VEmModel* GetMacroDefinedModel(); 0206 }; 0207 0208 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |