Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:08

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 //
0027 // Author: Mathieu Karamitros
0028 
0029 // The code is developed in the framework of the ESA AO7146
0030 //
0031 // We would be very happy hearing from you, send us your feedback! :)
0032 //
0033 // In order for Geant4-DNA to be maintained and still open-source,
0034 // article citations are crucial. 
0035 // If you use Geant4-DNA chemistry and you publish papers about your software, 
0036 // in addition to the general paper on Geant4-DNA:
0037 //
0038 // Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
0039 //
0040 // we would be very happy if you could please also cite the following
0041 // reference papers on chemistry:
0042 //
0043 // J. Comput. Phys. 274 (2014) 841-882
0044 // Prog. Nucl. Sci. Tec. 2 (2011) 503-508 
0045 
0046 #ifndef G4DNAOneStepThermalizationModel_hh
0047 #define G4DNAOneStepThermalizationModel_hh
0048 
0049 #include <memory>
0050 #include "G4VEmModel.hh"
0051 
0052 class G4ITNavigator;
0053 class G4Navigator;
0054 
0055 namespace DNA{
0056   namespace Penetration{
0057     //-----------------------
0058     /*
0059      * Article: Jintana Meesungnoen, Jean-Paul Jay-Gerin,
0060      *          Abdelali Filali-Mouhim, and Samlee Mankhetkorn (2002)
0061      *          Low-Energy Electron Penetration Range in Liquid Water.
0062      *          Radiation Research: November 2002, Vol. 158, No. 5, pp.657-660.
0063      */
0064     struct Meesungnoen2002{
0065       static void GetPenetration(G4double energy,
0066                                  G4ThreeVector& displacement);
0067       static double GetRmean(double energy);
0068       //-----
0069       // Polynomial fit of Meesungnoen, 2002
0070       static const double gCoeff[13];
0071     };
0072     
0073     struct Meesungnoen2002_amorphous{
0074       static void GetPenetration(G4double energy,
0075                                G4ThreeVector& displacement);
0076       static double GetRmean(double energy);
0077       //-----
0078       // Polynomial fit of Meesungnoen, 2002
0079       static const double gCoeff[7];
0080     };
0081 
0082     //-----------------------
0083     /*
0084      * Article: Kreipl M S, Friedland W, Paretzke H G (2009) Time- and
0085      *          space-resolved Monte Carlo study of water radiolysis
0086      *          for photon, electron and ion irradiation.
0087      *          Radiat Environ Biophys 48:11-20
0088      */
0089 
0090     struct Kreipl2009{
0091       static void GetPenetration(G4double energy,
0092                                  G4ThreeVector& displacement);
0093     };
0094 
0095     //-----------------------
0096     /*
0097      * Article: Terrissol M, Beaudre A (1990) Simulation of space and time 
0098      *          evolution of radiolytic species induced by electrons in water.
0099      *          Radiat Prot Dosimetry 31:171–175
0100      */
0101     struct Terrisol1990{
0102       static void GetPenetration(G4double energy,
0103                                  G4ThreeVector& displacement);
0104       static double GetRmean(double energy);
0105       static double Get3DStdDeviation(double energy);
0106       //-----
0107       // Terrisol, 1990
0108       static const double gEnergies_T1990[11];
0109       static const double gStdDev_T1990[11];
0110     };
0111     
0112     //-----------------------
0113     /*
0114      * Article: Ritchie RH, Hamm RN, Turner JE, Bolch WE (1994) Interaction of
0115      *          low-energy electrons with condensed matter: relevance for track
0116      *          structure.
0117      *          Computational approaches in molecular radiation biology, Plenum,
0118      *          New York, Vol. 63, pp. 155–166
0119      *          Note: also used in Ballarini et al., 2000
0120      */
0121     struct Ritchie1994{
0122       static void GetPenetration(G4double energy,
0123                                  G4ThreeVector& displacement);
0124       static double GetRmean(double energy);
0125     };
0126   }
0127 }
0128 
0129 /**
0130  * When an electron reaches the highest energy domain of
0131  * G4DNAOneStepThermalizationModel,
0132  * it is then automatically converted into a solvated electron and displace 
0133  * from its original position using a published thermalization statistic.
0134  */
0135 
0136 template<typename MODEL=DNA::Penetration::Meesungnoen2002>
0137 class G4TDNAOneStepThermalizationModel : public G4VEmModel
0138 {
0139 public:
0140   using Model = MODEL;
0141   G4TDNAOneStepThermalizationModel(const G4ParticleDefinition* p = nullptr,
0142                                    const G4String& nam =
0143                                       "DNAOneStepThermalizationModel");
0144   ~G4TDNAOneStepThermalizationModel() override;
0145 
0146   void Initialise(const G4ParticleDefinition*, const G4DataVector&) override;
0147 
0148   G4double CrossSectionPerVolume(const G4Material* material,
0149                                          const G4ParticleDefinition* p,
0150                                          G4double ekin,
0151                                          G4double emin,
0152                                          G4double emax) override;
0153 
0154   void SampleSecondaries(std::vector<G4DynamicParticle*>*,
0155                                  const G4MaterialCutsCouple*,
0156                                  const G4DynamicParticle*,
0157                                  G4double tmin,
0158                                  G4double maxEnergy) override;
0159 
0160   inline void SetVerbose(int flag){
0161     fVerboseLevel = flag;
0162   }
0163 
0164   void GetPenetration(G4double energy,
0165                       G4ThreeVector& displacement);
0166 
0167   double GetRmean(double energy);
0168 
0169 protected:
0170   const std::vector<G4double>* fpWaterDensity;
0171 
0172   G4ParticleChangeForGamma* fpParticleChangeForGamma;
0173   G4bool fIsInitialised{false};
0174   G4int fVerboseLevel;
0175   std::unique_ptr<G4Navigator> fpNavigator;
0176 
0177 private:
0178   G4TDNAOneStepThermalizationModel&
0179   operator=(const G4TDNAOneStepThermalizationModel &right);
0180   G4TDNAOneStepThermalizationModel(const G4TDNAOneStepThermalizationModel&);
0181 };
0182 
0183 #include "G4DNAOneStepThermalizationModel.hpp"
0184 
0185 using G4DNAOneStepThermalizationModel = G4TDNAOneStepThermalizationModel<DNA::Penetration::Meesungnoen2002>;
0186 
0187 // typedef G4TDNAOneStepThermalizationModel<DNA::Penetration::Terrisol1990> G4DNAOneStepThermalizationModel;
0188 // Note: if you use the above distribution, it would be
0189 // better to follow the electrons down to 6 eV and only then apply
0190 // the one step thermalization
0191 
0192 class G4DNASolvationModelFactory
0193 {
0194 public:
0195   /// @param penetrationType Available options:
0196   ///        Meesungnoen2002, Terrisol1990, Ritchie1994
0197   static G4VEmModel* Create(const G4String& penetrationModel);
0198   
0199   /// \brief One step thermalization model can be chosen via macro using
0200   ///        /process/dna/e-SolvationSubType Ritchie1994
0201   /// \return Create the model defined via the command macro
0202   ///         /process/dna/e-SolvationSubType
0203   ///         In case the command is unused, it returns the default model set in
0204   ///         G4EmParameters.
0205   static G4VEmModel* GetMacroDefinedModel();
0206 };
0207 
0208 #endif