Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:58:01

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 // G4ChebyshevApproximation
0027 //
0028 // Class description:
0029 //
0030 // Class creating the Chebyshev approximation for a function pointed by
0031 // fFunction data member. The Chebyshev polinom approximation provides an
0032 // efficient evaluation of minimax polynomial, which (among all polynomials of
0033 // the same degree) has the smallest maximum deviation from the true function.
0034 // The methods based mainly on recommendations given in the book : An
0035 // introduction to NUMERICAL METHODS IN C++, B.H. Flowers, Claredon Press,
0036 // Oxford, 1995
0037 
0038 // Author: V.Grichine, 24.04.1997
0039 // --------------------------------------------------------------------
0040 #ifndef G4CHEBYSHEVAPPROXIMATION_HH
0041 #define G4CHEBYSHEVAPPROXIMATION_HH 1
0042 
0043 #include "globals.hh"
0044 
0045 using function = G4double (*)(G4double);
0046 
0047 class G4ChebyshevApproximation
0048 {
0049  public:
0050   G4ChebyshevApproximation(function pFunction, G4int n, G4double a, G4double b);
0051   // Constructor for creation of Chebyshev coefficients for m-derivative
0052   // from pFunction. The value of m ! MUST BE ! < n , because the result
0053   // array of fChebyshevCof will be of (n-m) size.
0054   // It creates the array fChebyshevCof[0,...,fNumber-1], fNumber = n ;
0055   // which consists of Chebyshev coefficients describing the function pointed
0056   // by pFunction. The values a and b fixe the interval of validity of
0057   // Chebyshev approximation.
0058 
0059   G4ChebyshevApproximation(function pFunction, G4int n, G4int m, G4double a,
0060                            G4double b);
0061   // Constructor for creation of Chebyshev coefficients for m-derivative
0062   // from pFunction. The value of m ! MUST BE ! < n , because the result
0063   // array of fChebyshevCof will be of (n-m) size. There is a definite
0064   // dependence between the proper selection of n, m, a and b values to get
0065   // better accuracy of the derivative value.
0066 
0067   G4ChebyshevApproximation(function pFunction, G4double a, G4double b, G4int n);
0068   // Constructor for creation of Chebyshev coefficients for integral
0069   // from pFunction.
0070 
0071   ~G4ChebyshevApproximation();
0072   // Destructor deletes the array of Chebyshev coefficients
0073 
0074   G4ChebyshevApproximation(const G4ChebyshevApproximation&) = delete;
0075   G4ChebyshevApproximation& operator=(const G4ChebyshevApproximation&) = delete;
0076   // Copy constructor and assignment operator not allowed.
0077 
0078   G4double GetChebyshevCof(G4int number) const;
0079   // Access function for Chebyshev coefficients
0080 
0081   G4double ChebyshevEvaluation(G4double x) const;
0082   // Evaluate the value of fFunction at the point x via the Chebyshev
0083   // coefficients fChebyshevCof[0,...,fNumber-1]
0084 
0085   void DerivativeChebyshevCof(G4double derCof[]) const;
0086   // Returns the array derCof[0,...,fNumber-2], the Chebyshev coefficients
0087   // of the derivative of the function whose coefficients are fChebyshevCof
0088 
0089   void IntegralChebyshevCof(G4double integralCof[]) const;
0090   // This function produces the array integralCof[0,...,fNumber-1] , the
0091   // Chebyshev coefficients of the integral of the function whose coefficients
0092   // are fChebyshevCof. The constant of integration is set so that the integral
0093   // vanishes at the point (fMean - fDiff)
0094 
0095  private:
0096   function fFunction;       // pointer to a function considered
0097   G4int fNumber;            // number of Chebyshev coefficients
0098   G4double* fChebyshevCof;  // array of Chebyshev coefficients
0099   G4double fMean;           // (a+b)/2 - mean point of interval
0100   G4double fDiff;           // (b-a)/2 - half of the interval value
0101 };
0102 
0103 #endif