|
||||
File indexing completed on 2025-01-18 09:57:58
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // G4BogackiShampine45 0027 // 0028 // Class description: 0029 // 0030 // An implementation of the embedded RK method from the following paper 0031 // by P. Bogacki and L. F. Shampine: 0032 // "An efficient Runge-Kutta (4,5) pair" 0033 // Comput. Math. with Appl., vol. 32, no. 6, pp. 15-28, Sep. 1996. 0034 // 0035 // An interpolation method provides the value of an intermediate 0036 // point in a step -- if a step was sucessful. 0037 // 0038 // This version can provide the FSAL property of the method, 0039 // which allows the reuse of the last derivative in the next step, 0040 // but only by using the additional method GetLastDyDx() (an alternative 0041 // interface for simpler use of FSAL is under development). 0042 0043 // Created: Somnath Banerjee, Google Summer of Code 2015, 25 May 2015 0044 // Supervision: John Apostolakis, CERN 0045 // -------------------------------------------------------------------- 0046 #ifndef BOGACKI_SHAMPINE_45_HH 0047 #define BOGACKI_SHAMPINE_45_HH 0048 0049 #include "G4MagIntegratorStepper.hh" 0050 0051 class G4BogackiShampine45 : public G4MagIntegratorStepper 0052 { 0053 public: 0054 0055 G4BogackiShampine45(G4EquationOfMotion* EqRhs, 0056 G4int numberOfVariables = 6, 0057 G4bool primary = true); 0058 ~G4BogackiShampine45() override; 0059 0060 G4BogackiShampine45(const G4BogackiShampine45&) = delete; 0061 G4BogackiShampine45& operator=(const G4BogackiShampine45&) = delete; 0062 0063 void Stepper( const G4double y[], 0064 const G4double dydx[], 0065 G4double h, 0066 G4double yout[], 0067 G4double yerr[] ) override ; 0068 0069 // This Stepper provides 'dense output'. After a successful 0070 // step, it is possible to obtain an estimate of the value 0071 // of the function at an intermediate point of the interval. 0072 // This requires only two additional evaluations of the 0073 // derivative (and thus the field). 0074 0075 inline void SetupInterpolation() 0076 { 0077 SetupInterpolationHigh(); // ( yInput, dydx, Step); 0078 } 0079 0080 // For calculating the output at the tau fraction of Step 0081 // 0082 inline void Interpolate( G4double tau, 0083 G4double yOut[] ) // Output value 0084 { 0085 InterpolateHigh( tau, yOut); 0086 // InterpolateHigh( yInput, dydx, Step, yOut, tau); 0087 } 0088 0089 void SetupInterpolationHigh(); 0090 0091 // For calculating the output at the tau fraction of Step 0092 // 0093 void InterpolateHigh( G4double tau, 0094 G4double yOut[] ) const; 0095 0096 G4double DistChord() const override; 0097 G4int IntegratorOrder() const override { return 4; } 0098 0099 void GetLastDydx( G4double dyDxLast[] ); 0100 0101 void PrepareConstants(); // Initialise the values of the bi[][] array 0102 0103 private: 0104 0105 G4double *ak2, *ak3, *ak4, *ak5, *ak6, *ak7, *ak8, 0106 *ak9, *ak10, *ak11, *yTemp, *yIn; 0107 0108 G4double *p[6]; 0109 0110 G4double fLastStepLength = -1.0; 0111 G4double *fLastInitialVector, *fLastFinalVector, *fLastDyDx, 0112 *fMidVector, *fMidError; 0113 // For DistChord calculations 0114 0115 G4BogackiShampine45* fAuxStepper = nullptr; 0116 // For chord - until interpolation is proven 0117 G4bool fPreparedInterpolation = false; 0118 0119 // Class constants 0120 static G4bool fPreparedConstants; 0121 static G4double bi[12][7]; 0122 }; 0123 0124 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |