|
||||
File indexing completed on 2025-01-18 09:57:59
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // 0027 // 0028 //--------------------------------------------------------------------- 0029 // 0030 // G4BOptnLeadingParticle 0031 // 0032 // Class Description: 0033 // A G4VBiasingOperation that implements the so-called "Leading 0034 // particle biasing scheme". It is of interest in the shield problem 0035 // to estimate the flux leaking from the shield. 0036 // It works as follows: 0037 // - it is intented for hadronic inelastic interaction 0038 // - at each interaction, are kept: 0039 // - the most energetic particle (the leading particle) 0040 // - with unmodified weight 0041 // - randomly one particle of each species 0042 // - with this particle weight = n * primary_weight where 0043 // n is the number of particles of this species 0044 //--------------------------------------------------------------------- 0045 // Initial version Nov. 2019 M. Verderi 0046 0047 0048 #ifndef G4BOptnLeadingParticle_hh 0049 #define G4BOptnLeadingParticle_hh 1 0050 0051 #include "G4VBiasingOperation.hh" 0052 #include "G4ParticleChange.hh" 0053 0054 class G4BOptnLeadingParticle : public G4VBiasingOperation { 0055 public: 0056 // -- Constructor : 0057 G4BOptnLeadingParticle(G4String name); 0058 // -- destructor: 0059 virtual ~G4BOptnLeadingParticle(); 0060 0061 public: 0062 // -- Methods from G4VBiasingOperation interface: 0063 // ---------------------------------------------- 0064 // -- Unused: 0065 virtual const G4VBiasingInteractionLaw* ProvideOccurenceBiasingInteractionLaw( const G4BiasingProcessInterface*, G4ForceCondition& ) {return nullptr;} 0066 // -- Used: 0067 virtual G4VParticleChange* ApplyFinalStateBiasing( const G4BiasingProcessInterface*, // -- Method used for this biasing. The related biasing operator 0068 const G4Track*, // -- returns this biasing operation at the post step do it level 0069 const G4Step*, // -- when the wrapped process has won the interaction length race. 0070 G4bool& ); // -- The wrapped process final state is then trimmed. 0071 // -- Unused: 0072 virtual G4double DistanceToApplyOperation( const G4Track*, 0073 G4double, 0074 G4ForceCondition*) {return 0;} 0075 virtual G4VParticleChange* GenerateBiasingFinalState( const G4Track*, 0076 const G4Step* ) {return nullptr;} 0077 0078 public: 0079 // -- The possibility is given to further apply a Russian roulette on tracks that are accompagnying the leading particle 0080 // -- after the classical leading particle biasing algorithm has been applied. 0081 // -- This is of interest when applying the technique to e+ -> gamma gamma for example. Given one gamma is leading, 0082 // -- the second one is alone in its category, hence selected. With the Russian roulette it is then possible to keep 0083 // -- this one randomly. This is also of interest for pi0 decays, or for brem. e- -> e- gamma where the e- or gamma 0084 // -- are alone in their category. 0085 void SetFurtherKillingProbability( G4double p ) { fRussianRouletteKillingProbability = p; } // -- if p <= 0.0 the killing is ignored. 0086 G4double GetFurtherKillingProbability() const { return fRussianRouletteKillingProbability; } 0087 0088 private: 0089 // -- Particle change used to return the trimmed final state: 0090 G4ParticleChange fParticleChange; 0091 G4double fRussianRouletteKillingProbability; 0092 0093 0094 }; 0095 0096 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |