|
||||
File indexing completed on 2025-01-18 09:57:53
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // G4AnalyticalPolSolver 0027 // 0028 // Class description: 0029 // 0030 // G4AnalyticalPolSolver allows the user to solve analytically a polynomial 0031 // equation up to the 4th order. This is used by CSG solid tracking functions 0032 // like G4Torus. 0033 // 0034 // The algorithm has been adapted from the CACM Algorithm 326: 0035 // 0036 // Roots of low order polynomials 0037 // Author: Terence R.F.Nonweiler 0038 // CACM (Apr 1968) p269 0039 // Translated into C and programmed by M.Dow 0040 // ANUSF, Australian National University, Canberra, Australia 0041 // m.dow@anu.edu.au 0042 // 0043 // Suite of procedures for finding the (complex) roots of the quadratic, 0044 // cubic or quartic polynomials by explicit algebraic methods. 0045 // Each Returns: 0046 // 0047 // x=r[1][k] + i r[2][k] k=1,...,n, where n={2,3,4} 0048 // 0049 // as roots of: 0050 // sum_{k=0:n} p[k] x^(n-k) = 0 0051 // Assumes p[0] != 0. (< or > 0) (overflows otherwise) 0052 0053 // Author: V.Grichine, 13.05.2005 0054 // -------------------------------------------------------------------- 0055 #ifndef G4AN_POL_SOLVER_HH 0056 #define G4AN_POL_SOLVER_HH 1 0057 0058 #include "G4Types.hh" 0059 0060 class G4AnalyticalPolSolver 0061 { 0062 public: 0063 G4AnalyticalPolSolver(); 0064 ~G4AnalyticalPolSolver(); 0065 0066 G4int QuadRoots(G4double p[5], G4double r[3][5]); 0067 G4int CubicRoots(G4double p[5], G4double r[3][5]); 0068 G4int BiquadRoots(G4double p[5], G4double r[3][5]); 0069 G4int QuarticRoots(G4double p[5], G4double r[3][5]); 0070 }; 0071 0072 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |