Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-04-04 08:49:57

0001 /***********************************************************************************\
0002 * (c) Copyright 1998-2024 CERN for the benefit of the LHCb and ATLAS collaborations *
0003 *                                                                                   *
0004 * This software is distributed under the terms of the Apache version 2 licence,     *
0005 * copied verbatim in the file "LICENSE".                                            *
0006 *                                                                                   *
0007 * In applying this licence, CERN does not waive the privileges and immunities       *
0008 * granted to it by virtue of its status as an Intergovernmental Organization        *
0009 * or submit itself to any jurisdiction.                                             *
0010 \***********************************************************************************/
0011 #pragma once
0012 
0013 #include <Gaudi/Accumulators.h>
0014 #include <Gaudi/MonitoringHub.h>
0015 #include <GaudiKernel/HistoDef.h>
0016 
0017 #include <array>
0018 #include <cmath>
0019 #include <fmt/format.h>
0020 #include <nlohmann/json.hpp>
0021 #include <string>
0022 #include <type_traits>
0023 #include <utility>
0024 #include <vector>
0025 
0026 namespace {
0027   // Helper class creating a "subtuple" type from a tuple type by keeping only
0028   // the first N items.
0029   template <typename Tuple, typename Seq>
0030   struct SubTuple;
0031   template <typename Tuple, size_t... I>
0032   struct SubTuple<Tuple, std::index_sequence<I...>> {
0033     using type = decltype( std::make_tuple( std::get<I>( std::declval<Tuple>() )... ) );
0034   };
0035   template <typename Tuple, unsigned int N>
0036   using SubTuple_t = typename SubTuple<Tuple, std::make_index_sequence<N>>::type;
0037 
0038   /// helper class to create a tuple of N identical types
0039   template <typename T, unsigned int ND, typename = std::make_integer_sequence<unsigned int, ND>>
0040   struct make_tuple;
0041   template <typename T, unsigned int ND, unsigned int... S>
0042   struct make_tuple<T, ND, std::integer_sequence<unsigned int, S...>> {
0043     template <unsigned int>
0044     using typeMap = T;
0045     using type    = std::tuple<typeMap<S>...>;
0046   };
0047   template <typename T, unsigned int ND>
0048   using make_tuple_t = typename make_tuple<T, ND>::type;
0049 
0050   /// template magic converting a tuple of Axis into the tuple of corresponding Arithmetic types
0051   template <typename AxisTupleType>
0052   struct AxisToArithmetic;
0053   template <typename... Axis>
0054   struct AxisToArithmetic<std::tuple<Axis...>> {
0055     using type = std::tuple<typename Axis::ArithmeticType...>;
0056   };
0057   template <typename AxisTupleType>
0058   using AxisToArithmetic_t = typename AxisToArithmetic<AxisTupleType>::type;
0059   template <typename ProfArithmetic, typename AxisTupleType>
0060   using ProfileAxisToArithmetic_t = decltype( std::tuple_cat( std::declval<AxisToArithmetic_t<AxisTupleType>>(),
0061                                                               std::declval<std::tuple<ProfArithmetic>>() ) );
0062 } // namespace
0063 
0064 namespace Gaudi::Accumulators {
0065 
0066   namespace details {
0067     inline void requireValidTitle( std::string_view sv ) {
0068       if ( !sv.empty() && ( std::isspace( sv.back() ) || std::isspace( sv.front() ) ) ) {
0069         throw GaudiException(
0070             fmt::format( "Histogram title \'{}\' has whitespace at front or back -- please remove", sv ),
0071             "Gaudi::Accumulators", StatusCode::FAILURE );
0072       }
0073     }
0074   } // namespace details
0075 
0076   /**
0077    * A functor to extract weight, take a pair (valueTuple, weight) as input
0078    */
0079   struct ExtractWeight {
0080     template <typename Arithmetic>
0081     constexpr decltype( auto ) operator()( const std::pair<unsigned long, Arithmetic>& v ) const noexcept {
0082       return v.second;
0083     }
0084   };
0085 
0086   /**
0087    * A Product functor, take a pair (value, weight) as input
0088    */
0089   struct WeightedProduct {
0090     template <typename Arithmetic>
0091     constexpr decltype( auto ) operator()( const std::pair<Arithmetic, Arithmetic>& v ) const noexcept {
0092       return v.first * v.second;
0093     }
0094   };
0095 
0096   /**
0097    * A WeightedSquare functor, take a pair (value, weight) as input
0098    */
0099   struct WeightedSquare {
0100     template <typename Arithmetic>
0101     constexpr decltype( auto ) operator()( const std::pair<Arithmetic, Arithmetic>& v ) const noexcept {
0102       return v.first * v.first * v.second;
0103     }
0104   };
0105 
0106   /**
0107    * An Adder ValueHandler, taking weight into account and computing a count plus the sum of the weights
0108    * In case of full atomicity, fetch_add or compare_exchange_weak are used for each element,
0109    * that is we do not have full atomicity accross the two elements
0110    */
0111   template <typename Arithmetic, atomicity Atomicity>
0112   struct WeightedAdder {
0113     using RegularType              = std::pair<unsigned long, Arithmetic>;
0114     using AtomicType               = std::pair<std::atomic<unsigned long>, std::atomic<Arithmetic>>;
0115     using OutputType               = RegularType;
0116     static constexpr bool isAtomic = Atomicity == atomicity::full;
0117     using InternalType             = std::conditional_t<isAtomic, AtomicType, OutputType>;
0118     static constexpr OutputType getValue( const InternalType& v ) noexcept {
0119       if constexpr ( isAtomic ) {
0120         return { v.first.load( std::memory_order_relaxed ), v.second.load( std::memory_order_relaxed ) };
0121       } else {
0122         return v;
0123       }
0124     };
0125     static RegularType exchange( InternalType& v, RegularType newv ) noexcept {
0126       if constexpr ( isAtomic ) {
0127         return { v.first.exchange( newv.first ), v.second.exchange( newv.second ) };
0128       } else {
0129         return { std::exchange( v.first, newv.first ), std::exchange( v.second, newv.second ) };
0130       }
0131     }
0132     static constexpr OutputType DefaultValue() { return { 0, Arithmetic{} }; }
0133     static void                 merge( InternalType& a, RegularType b ) noexcept {
0134       if constexpr ( isAtomic ) {
0135         fetch_add( a.first, b.first );
0136         fetch_add( a.second, b.second );
0137       } else {
0138         a.first += b.first;
0139         a.second += b.second;
0140       }
0141     };
0142   };
0143 
0144   /**
0145    * WeightedCountAccumulator. A WeightedCountAccumulator is an Accumulator storing the number of provided values,
0146    * as well as the weighted version of it, aka. the sum of weights. It takes a pair (valueTuple, weight) as input
0147    * @see Gaudi::Accumulators for detailed documentation
0148    */
0149   template <atomicity Atomicity, typename Arithmetic>
0150   struct WeightedCountAccumulator
0151       : GenericAccumulator<std::pair<Arithmetic, Arithmetic>, std::pair<unsigned long, Arithmetic>, Atomicity, Identity,
0152                            ExtractWeight, WeightedAdder<Arithmetic, Atomicity>> {
0153     using Base = GenericAccumulator<std::pair<Arithmetic, Arithmetic>, std::pair<unsigned long, Arithmetic>, Atomicity,
0154                                     Identity, ExtractWeight, WeightedAdder<Arithmetic, Atomicity>>;
0155     using Base::Base;
0156     using Base::operator+=;
0157     /// overload of operator+= to be able to only give weight and no value
0158     WeightedCountAccumulator operator+=( const Arithmetic weight ) {
0159       *this += { 1ul, weight };
0160       return *this;
0161     }
0162     unsigned long nEntries() const { return this->rawValue().first; }
0163     Arithmetic    sumOfWeights() const { return this->rawValue().second; }
0164   };
0165 
0166   /**
0167    * WeightedSumAccumulator. A WeightedSumAccumulator is an Accumulator storing a weighted sum of values.
0168    * It takes a pair (valueTuple, weight) and basically sums the product of the last item othe 2 part of its in put pair
0169    * : weight and value
0170    * @see Gaudi::Accumulators for detailed documentation
0171    */
0172   template <atomicity Atomicity, typename Arithmetic>
0173   struct WeightedSumAccumulator
0174       : GenericAccumulator<std::pair<Arithmetic, Arithmetic>, Arithmetic, Atomicity, WeightedProduct> {
0175     using GenericAccumulator<std::pair<Arithmetic, Arithmetic>, Arithmetic, Atomicity,
0176                              WeightedProduct>::GenericAccumulator;
0177     Arithmetic sum() const { return this->value(); }
0178   };
0179 
0180   /**
0181    * WeightedSquareAccumulator. A WeightedSquareAccumulator is an Accumulator storing a weighted sum of squared values.
0182    * It basically takes a pair (value, weight) as input and sums weight*value*value
0183    * @see Gaudi::Accumulators for detailed documentation
0184    */
0185   template <atomicity Atomicity, typename Arithmetic = double>
0186   struct WeightedSquareAccumulator
0187       : GenericAccumulator<std::pair<Arithmetic, Arithmetic>, Arithmetic, Atomicity, WeightedSquare> {
0188     using GenericAccumulator<std::pair<Arithmetic, Arithmetic>, Arithmetic, Atomicity,
0189                              WeightedSquare>::GenericAccumulator;
0190     Arithmetic sum2() const { return this->value(); };
0191   };
0192 
0193   /**
0194    * WeightedAveragingAccumulator. An WeightedAveragingAccumulator is an Accumulator able to compute an average
0195    * This implementation takes a pair (value, weight) as input
0196    * @see Gaudi::Accumulators for detailed documentation
0197    */
0198   template <atomicity Atomicity, typename Arithmetic>
0199   using WeightedAveragingAccumulator =
0200       AveragingAccumulatorBase<Atomicity, Arithmetic, WeightedCountAccumulator, WeightedSumAccumulator>;
0201 
0202   /**
0203    * WeightedSigmaAccumulator. A WeightedSigmaAccumulator is an Accumulator able to compute an average and variance/rms
0204    * This implementation takes a pair (value, weight) as input
0205    * @see Gaudi::Accumulators for detailed documentation
0206    */
0207   template <atomicity Atomicity, typename Arithmetic>
0208   using WeightedSigmaAccumulator =
0209       SigmaAccumulatorBase<Atomicity, Arithmetic, WeightedAveragingAccumulator, WeightedSquareAccumulator>;
0210 
0211   /**
0212    * Definition of a default type of Histogram Axis
0213    * It contains number of bins, min and max value plus a title
0214    * and defines the basic type of Axis (non log)
0215    * It may also contain labels for the bins
0216    */
0217   template <typename Arithmetic>
0218   class Axis {
0219   public:
0220     using ArithmeticType = Arithmetic;
0221     Axis( unsigned int nBins = 0, Arithmetic minValue = Arithmetic{}, Arithmetic maxValue = Arithmetic{},
0222           std::string title = {}, std::vector<std::string> labels = {} )
0223         : m_title( std::move( title ) )
0224         , nBins( nBins )
0225         , m_minValue( minValue )
0226         , m_maxValue( maxValue )
0227         , m_labels( std::move( labels ) ) {
0228       details::requireValidTitle( m_title );
0229       recomputeRatio();
0230       for ( const auto& s : m_labels ) details::requireValidTitle( s );
0231     };
0232     explicit Axis( Gaudi::Histo1DDef const& def )
0233         : Axis( (unsigned int)def.bins(), def.lowEdge(), def.highEdge(), def.title() ){};
0234 
0235     /// returns the bin number for a given value, ranging from 0 (underflow) to nBins+1 (overflow)
0236     unsigned int index( Arithmetic value ) const {
0237       // In case we use integer as Arithmetic type, we cannot use ratio for computing indices,
0238       // as ratios < 1.0 will simply be 0, so we have to pay the division in such a case
0239       int idx;
0240       if constexpr ( std::is_integral_v<Arithmetic> ) {
0241         idx = ( ( value - m_minValue ) * nBins / ( m_maxValue - m_minValue ) ) + 1;
0242       } else {
0243         idx = std::floor( ( value - m_minValue ) * m_ratio ) + 1;
0244       }
0245       return idx < 0 ? 0 : ( (unsigned int)idx > numBins() ? numBins() + 1 : (unsigned int)idx );
0246     }
0247 
0248     friend std::ostream& operator<<( std::ostream& o, Axis const& axis ) {
0249       // Note that we print python code here, as the generic toStream implementation uses this
0250       // operator to generate python code.
0251       o << "(" << axis.numBins() << ", " << axis.minValue() << ", " << axis.maxValue() << ", "
0252         << "\"" << axis.m_title << "\", (";
0253       for ( auto const& label : axis.m_labels ) { o << "\"" << label << "\", "; }
0254       return o << "))";
0255     }
0256 
0257     /// says whether the given value is within the range of the axis
0258     bool inAcceptance( Arithmetic value ) const { return value >= m_minValue && value <= m_maxValue; }
0259 
0260     // accessors
0261     unsigned int numBins() const { return nBins; };
0262     void         setNumBins( unsigned int n ) {
0263       nBins = n;
0264       recomputeRatio();
0265     }
0266     Arithmetic minValue() const { return m_minValue; };
0267     void       setMinValue( Arithmetic v ) {
0268       m_minValue = v;
0269       recomputeRatio();
0270     }
0271     Arithmetic maxValue() const { return m_maxValue; };
0272     void       setMaxValue( Arithmetic v ) {
0273       m_maxValue = v;
0274       recomputeRatio();
0275     }
0276     std::string const&             title() const { return m_title; }
0277     void                           setTitle( std::string const& t ) { m_title = t; };
0278     std::vector<std::string> const labels() const { return m_labels; }
0279 
0280   private:
0281     /// title of this axis
0282     std::string m_title;
0283 
0284   public:
0285     /// number of bins for this Axis
0286     /// FIXME : should be private and called m_nBins but will break backward compatibility with previous implementation.
0287     unsigned int nBins;
0288 
0289   private:
0290     /// min and max values on this axis
0291     Arithmetic m_minValue, m_maxValue;
0292     /**
0293      * precomputed ratio to convert a value into bin number
0294      * equal to nBins/(maxValue-minValue). Only used for floating Arithmetic
0295      */
0296     Arithmetic m_ratio;
0297     /// labels for the bins
0298     std::vector<std::string> m_labels;
0299 
0300     void recomputeRatio() {
0301       m_ratio = ( m_maxValue == m_minValue ) ? Arithmetic{} : nBins / ( m_maxValue - m_minValue );
0302     }
0303   };
0304 
0305   /// automatic conversion of the Axis type to json
0306   template <typename Arithmetic>
0307   void to_json( nlohmann::json& j, const Axis<Arithmetic>& axis ) {
0308     j = nlohmann::json{ { "nBins", axis.numBins() },
0309                         { "minValue", axis.minValue() },
0310                         { "maxValue", axis.maxValue() },
0311                         { "title", axis.title() } };
0312     if ( !axis.labels().empty() ) { j["labels"] = axis.labels(); }
0313   }
0314 
0315   /**
0316    * small class used as InputType for regular Histograms
0317    * basically a tuple of the given values, specialized in case of a single
0318    * entry so that the syntax is more natural.
0319    * NIndex should be lower than number of Arithmetic types and denotes the
0320    * number of items used as index. There can typically be one more type in
0321    * the list for profile histograms, not use as index on an axis
0322    * ValueType is the actual type used to fill the histogram, that is
0323    * the ArithmeticTuple reduced to NIndex items
0324    *
0325    * Note : the specialization is only needed to ensure backward compatibility
0326    * with previous implementation where there was only one Arithmetic type common
0327    * to all axis. It should in principal be the one and only implementation
0328    * FIXME : remove specialization when client code was adapted
0329    */
0330   template <typename Arithmetic, unsigned int NIndex>
0331   struct HistoInputType : HistoInputType<make_tuple_t<Arithmetic, NIndex>, NIndex> {
0332     using HistoInputType<make_tuple_t<Arithmetic, NIndex>, NIndex>::HistoInputType;
0333   };
0334   template <unsigned int NIndex, typename... Elements>
0335   struct HistoInputType<std::tuple<Elements...>, NIndex> : std::tuple<Elements...> {
0336     using InternalType = std::tuple<Elements...>;
0337     using ValueType    = HistoInputType<SubTuple_t<InternalType, NIndex>, NIndex>;
0338     using std::tuple<Elements...>::tuple;
0339     template <class... AxisType, typename = typename std::enable_if_t<( sizeof...( AxisType ) == NIndex )>>
0340     unsigned int computeIndex( std::tuple<AxisType...> const& axis ) const {
0341       return computeIndexInternal<0, std::tuple<AxisType...>>( axis );
0342     }
0343     template <class... AxisType, typename = typename std::enable_if_t<( sizeof...( AxisType ) == NIndex )>>
0344     static unsigned int computeTotNBins( std::tuple<AxisType...> const& axis ) {
0345       return computeTotNBinsInternal<0, std::tuple<AxisType...>>( axis );
0346     }
0347     auto forInternalCounter() const { return 1ul; }
0348     template <class... AxisType, typename = typename std::enable_if_t<( sizeof...( AxisType ) == NIndex )>>
0349     bool inAcceptance( std::tuple<AxisType...> const& axis ) const {
0350       return inAcceptanceInternal<0, std::tuple<AxisType...>>( axis );
0351     }
0352 
0353   private:
0354     template <int N, class Tuple>
0355     unsigned int computeIndexInternal( Tuple const& allAxis ) const {
0356       // compute global index. Bins are stored in a column first manner
0357       auto const&  axis       = std::get<N>( allAxis );
0358       unsigned int localIndex = axis.index( std::get<N>( *this ) );
0359       if constexpr ( N + 1 == NIndex )
0360         return localIndex;
0361       else
0362         return localIndex + ( axis.numBins() + 2 ) * computeIndexInternal<N + 1, Tuple>( allAxis );
0363     }
0364     template <int N, class Tuple>
0365     static unsigned int computeTotNBinsInternal( Tuple const& allAxis ) {
0366       auto const&  axis       = std::get<N>( allAxis );
0367       unsigned int localNBins = axis.numBins() + 2;
0368       if constexpr ( N + 1 == NIndex )
0369         return localNBins;
0370       else
0371         return localNBins * computeTotNBinsInternal<N + 1, Tuple>( allAxis );
0372     }
0373     template <int N, class Tuple>
0374     bool inAcceptanceInternal( Tuple const& allAxis ) const {
0375       auto const& axis        = std::get<N>( allAxis );
0376       bool        localAnswer = axis.inAcceptance( std::get<N>( *this ) );
0377       if constexpr ( N + 1 == NIndex )
0378         return localAnswer;
0379       else
0380         return localAnswer || inAcceptanceInternal<N + 1, Tuple>( allAxis );
0381     }
0382   };
0383 
0384   /**
0385    * small class used as InputType for weighted Histograms
0386    * only a pair of the InnerType and the weight.
0387    * See description of HistoInputType for more details
0388    */
0389   template <typename ArithmeticTuple, unsigned int NIndex, typename WArithmetic>
0390   struct WeightedHistoInputType : std::pair<HistoInputType<ArithmeticTuple, NIndex>, WArithmetic> {
0391     using ValueType = typename HistoInputType<ArithmeticTuple, NIndex>::ValueType;
0392     using std::pair<HistoInputType<ArithmeticTuple, NIndex>, WArithmetic>::pair;
0393     template <class... AxisType, typename = typename std::enable_if_t<( sizeof...( AxisType ) == NIndex )>>
0394     unsigned int computeIndex( std::tuple<AxisType...> const& axis ) const {
0395       return this->first.computeIndex( axis );
0396     }
0397     template <class... AxisType, typename = typename std::enable_if_t<( sizeof...( AxisType ) == NIndex )>>
0398     static unsigned int computeTotNBins( std::tuple<AxisType...> const& axis ) {
0399       return HistoInputType<ArithmeticTuple, NIndex>::computeTotNBins( axis );
0400     }
0401     auto forInternalCounter() const { return std::pair( this->first.forInternalCounter(), this->second ); }
0402     template <class... AxisType, typename = typename std::enable_if_t<( sizeof...( AxisType ) == NIndex )>>
0403     bool inAcceptance( std::tuple<AxisType...> const& axis ) const {
0404       return this->first.inAcceptance( axis );
0405     }
0406   };
0407 
0408   /**
0409    * Internal Accumulator class dealing with Histograming. Templates parameters are :
0410    *  - Atomicity : none or full
0411    *  - InputType : a class holding a value given as input of the Histogram,
0412    *    and able to answer questions on this value given a number of axis matching
0413    *    the type of value.
0414    *    e.g. it would hold a pair of double for a non weighted 2D histogram or
0415    *    a pair of triplet of doubles and double for the weighted 3D histogram.
0416    *    Example implementations are (Weighted)HistoInputType.
0417    *    This class must define :
0418    *      + a constructor taking a set of value to build the InputType
0419    *      + a static method `unsigned int computeTotNBins( std::tuple<AxisType...> const& )`
0420    *        able to compute the total number of bins needed with this input type and
0421    *        these axis. It will typically be the product of the number of bins for each
0422    *        dimension, potentially increased by 2 for each if underflow and overflow
0423    *        is supported
0424    *      + a type ValueType alias defining the type of the input values to give to InputType
0425    *        This type needs to implement :
0426    *        * a method
0427    *          `unsigned int computeIndex( std::tuple<AxisType...> const& ) const`
0428    *          able to compute the bin corresponding to a given value
0429    *        * a method `auto forInternalCounter() const` returning the value to be used to
0430    *          inscrease the accumulator dealing with the bin associated with the current value.
0431    *          In most simple cases, it return `Arithmetic{}` or even `1` but for weighted
0432    *          histograms, it returns a pair with the weight as second item
0433    *        * in case of usage within a RootHistogram, it should also define a method
0434    *          `bool inAcceptance( std::tuple<AxisType...> const& )` checking whether a given
0435    *          value in within the range of the accumulator
0436    *  - Arithmetic : the arithmetic type used for values stored inside the histogram
0437    *    e.g. unsigned int for regular histogram as we only count entries, or float/double
0438    *    for weighted histograms, as we store actual sums of original values
0439    *  - BaseAccumulator : the underlying accumulator used in each bin
0440    *  - AxisTupleType : the types of the axis as a tuple. Its length defines the dimension
0441    *    of the Histogram this accumulator handles.
0442    *    The constraints on the AxisType are : FIXME use concepts when available
0443    *      + that they can be copied
0444    *      + that they have a ArithmeticType type alias
0445    *      + that they have a `unsigned int numBins() const` method
0446    *      + that they have a friend operator<< using std::ostream for printing
0447    *      + that they have a friend to_json method using nlohmann library
0448    *      + that they implement whatever is needed by the computeIndex and computeTotNBins methods
0449    *         of the InputType used. Plus the inAcceptance one if Roothistograms are used
0450    *    A default Axis class is provided for most cases
0451    * This accumulator is simply an array of BaseAccumulator, one per bin.
0452    */
0453   template <atomicity Atomicity, typename InputType, typename Arithmetic,
0454             template <atomicity Ato, typename Arith> typename BaseAccumulatorT, typename AxisTupleType>
0455   class HistogramingAccumulatorInternal {
0456     template <atomicity, typename, typename, template <atomicity, typename> typename, typename>
0457     friend class HistogramingAccumulatorInternal;
0458 
0459   public:
0460     using ND                      = std::integral_constant<unsigned int, std::tuple_size_v<AxisTupleType>>;
0461     using BaseAccumulator         = BaseAccumulatorT<Atomicity, Arithmetic>;
0462     using AxisTupleArithmeticType = typename InputType::ValueType;
0463     HistogramingAccumulatorInternal( AxisTupleType axis )
0464         : m_axis{ axis }
0465         , m_totNBins{ InputType::computeTotNBins( m_axis ) }
0466         , m_value( new BaseAccumulator[m_totNBins] ) {
0467       reset();
0468     }
0469     template <atomicity ato>
0470     HistogramingAccumulatorInternal(
0471         construct_empty_t,
0472         const HistogramingAccumulatorInternal<ato, InputType, Arithmetic, BaseAccumulatorT, AxisTupleType>& other )
0473         : m_axis( other.m_axis ), m_totNBins{ other.m_totNBins }, m_value( new BaseAccumulator[m_totNBins] ) {
0474       reset();
0475     }
0476     [[deprecated( "Use `++h1[x]`, `++h2[{x,y}]`, etc. instead." )]] HistogramingAccumulatorInternal&
0477     operator+=( InputType v ) {
0478       accumulator( v.computeIndex( m_axis ) ) += v.forInternalCounter();
0479       return *this;
0480     }
0481     void reset() {
0482       for ( unsigned int index = 0; index < m_totNBins; index++ ) accumulator( index ).reset();
0483     }
0484     template <atomicity ato>
0485     void mergeAndReset(
0486         HistogramingAccumulatorInternal<ato, InputType, Arithmetic, BaseAccumulatorT, AxisTupleType>& other ) {
0487       assert( m_totNBins == other.m_totNBins );
0488       for ( unsigned int index = 0; index < m_totNBins; index++ ) {
0489         accumulator( index ).mergeAndReset( other.accumulator( index ) );
0490       }
0491     }
0492     [[nodiscard]] auto operator[]( typename InputType::ValueType v ) {
0493       return Buffer<BaseAccumulatorT, Atomicity, Arithmetic>{ accumulator( v.computeIndex( m_axis ) ) };
0494     }
0495 
0496     template <unsigned int N>
0497     auto& axis() const {
0498       return std::get<N>( m_axis );
0499     }
0500     auto& axis() const { return m_axis; }
0501     auto  binValue( unsigned int i ) const { return accumulator( i ).value(); }
0502     auto  nEntries( unsigned int i ) const { return accumulator( i ).nEntries(); }
0503     auto  totNBins() const { return m_totNBins; }
0504 
0505     // FIXME These methods are there for backwrad compatibility with previous implementation
0506     // where all Axis had to be of type Axis<...> and were stored in an array
0507     // Newer code should call axis<N>().foo for whatever foo is defined in that axis type
0508     auto nBins( unsigned int i ) const { return _getAxis( i, std::integral_constant<size_t, 0>() ).numBins(); }
0509     auto minValue( unsigned int i ) const { return _getAxis( i, std::integral_constant<size_t, 0>() ).minValue(); }
0510     auto maxValue( unsigned int i ) const { return _getAxis( i, std::integral_constant<size_t, 0>() ).maxValue(); }
0511 
0512   private:
0513     BaseAccumulator& accumulator( unsigned int index ) const {
0514       assert( index < m_totNBins );
0515       return m_value[index];
0516     }
0517 
0518     // FIXME Only used for backward compatibility. should be dropped at some stage
0519     // Can only work if all axis have same type, which is no more the case
0520     std::tuple_element_t<0, AxisTupleType> const& _getAxis( size_t i,
0521                                                             typename std::tuple_size<AxisTupleType>::type ) const {
0522       throw std::logic_error(
0523           fmt::format( "Retrieving axis {} in Histogram of dimension {}", i, std::tuple_size_v<AxisTupleType> ) );
0524     }
0525     template <size_t N, typename = std::enable_if_t<std::tuple_size_v<AxisTupleType> != N>>
0526     auto& _getAxis( size_t i, std::integral_constant<size_t, N> ) const {
0527       if ( i == N ) return std::get<N>( m_axis );
0528       return _getAxis( i, std::integral_constant<size_t, N + 1>() );
0529     }
0530 
0531     /// set of Axis of this Histogram
0532     AxisTupleType m_axis;
0533     /// total number of bins in this histogram, under and overflow included
0534     unsigned int m_totNBins;
0535     /// Histogram content
0536     std::unique_ptr<BaseAccumulator[]> m_value;
0537   };
0538 
0539   /**
0540    * Class implementing a regular histogram accumulator
0541    *
0542    * Actually only an alias to HistogramingAccumulatorInternal with proper template parameters
0543    */
0544   template <atomicity Atomicity, typename Arithmetic, typename ND, typename AxisTupleType>
0545   using HistogramingAccumulator =
0546       HistogramingAccumulatorInternal<Atomicity, HistoInputType<AxisToArithmetic_t<AxisTupleType>, ND::value>,
0547                                       unsigned long, IntegralAccumulator, AxisTupleType>;
0548 
0549   /**
0550    * Class implementing a weighted histogram accumulator
0551    *
0552    * Actually only an alias to HistogramingAccumulatorInternal with proper template parameters
0553    */
0554   template <atomicity Atomicity, typename Arithmetic, typename ND, typename AxisTupleType>
0555   using WeightedHistogramingAccumulator =
0556       HistogramingAccumulatorInternal<Atomicity,
0557                                       WeightedHistoInputType<AxisToArithmetic_t<AxisTupleType>, ND::value, Arithmetic>,
0558                                       Arithmetic, WeightedCountAccumulator, AxisTupleType>;
0559 
0560   /**
0561    * Class implementing a profile histogram accumulator
0562    *
0563    * Actually only an alias to HistogramingAccumulatorInternal with proper template parameters
0564    */
0565   template <atomicity Atomicity, typename Arithmetic, typename ND, typename AxisTupleType>
0566   using ProfileHistogramingAccumulator =
0567       HistogramingAccumulatorInternal<Atomicity,
0568                                       HistoInputType<ProfileAxisToArithmetic_t<Arithmetic, AxisTupleType>, ND::value>,
0569                                       Arithmetic, SigmaAccumulator, AxisTupleType>;
0570 
0571   /**
0572    * Class implementing a weighted profile histogram accumulator
0573    *
0574    * Actually only an alias to HistogramingAccumulatorInternal with proper template parameters
0575    */
0576   template <atomicity Atomicity, typename Arithmetic, typename ND, typename AxisTupleType>
0577   using WeightedProfileHistogramingAccumulator = HistogramingAccumulatorInternal<
0578       Atomicity, WeightedHistoInputType<ProfileAxisToArithmetic_t<Arithmetic, AxisTupleType>, ND::value, Arithmetic>,
0579       Arithmetic, WeightedSigmaAccumulator, AxisTupleType>;
0580 
0581   /**
0582    * A base counter dealing with Histograms
0583    *
0584    * Main features of that Counter :
0585    *  - can be any number of dimensions. The dimension is its first template parameter
0586    *  - for each dimension, an Axis is associated. Axis can be of any type depending
0587    *    on the underlying accumulator
0588    *  - the constructor expects one extra argument per axis, typically a tuple
0589    *    of values allowing to create the Axis objects in the back
0590    *  - the operator+= takes either an array of values (one per dimension)
0591    *    or a tuple<array of values, weight>. The value inside the bin
0592    *    corresponding to the given values is then increased by 1 or weight
0593    *  - the prefered syntax is to avoid operator+= and use operator[] to get a
0594    *    buffer on the bin you're updating. Syntax becomes :
0595    *        ++counter[{x,y}]   or   wcounter[{x,y}] += w
0596    *  - the Counter is templated by the types of the values given to
0597    *    operator+ and also by the type stored into the bins
0598    *  - the counter can be atomic or not and supports buffering. Note that
0599    *    the atomicity is classical eventual consistency. So each bin is
0600    *    atomically updated but bins are not garanted to be coherent when
0601    *    reading all of them back
0602    *  - profile histograms are also supported, operator+= takes one more
0603    *    value in the array of values in that case
0604    *
0605    * This base class is then aliases for the 4 standard cases of Histogram,
0606    * WeightedHistogram, ProfileHistogram and WeightedProfileHistogram.
0607    * For all predefined Histogram types, the axis type is a simple triplet
0608    * of values nbins, minValue, maxValue plus a title.
0609    *
0610    * Typical usage :
0611    * \code
0612    * Histogram<2, double, atomicity::full>
0613    *   counter{owner, "CounterName", "HistoTitle", {{nBins1, minVal1, maxVal1}, {nBins2, minVal2, maxVal2,
0614    * "AxisTitle"}}};
0615    * ++counter[{val1, val2}];    // prefered syntax
0616    * counter += {val1, val2};    // original syntax inherited from counters
0617    *
0618    * WeightedHistogram<2, double, atomicity::full>
0619    *   wcounter{owner, "CounterName", "HistoTitle", {{nBins1, minVal1, maxVal1}, {nBins2, minVal2, maxVal2,
0620    * "AxisTitle"}}}; wcounter[{val1, val2}] += w;    // prefered syntax wcounter += {{val1, val2}, w};  // original
0621    * syntax inherited from counters \endcode
0622    *
0623    * When serialized to json, this counter uses new types histogram:Histogram:<prec>, histogram:ProfileHistogram:<prec>,
0624    * histogram:WeightedHistogram:<prec> and histrogram:WeightedProfileHistogram:<prec>
0625    * <prec> id described in Accumulators.h and decribes here the precision of the bin data.
0626    * All these types have the same fields, namely :
0627    *   dimension(integer), title(string), empty(bool), nEntries(integer), axis(array), bins(array)
0628    * where :
0629    *     + axis is an array of tuples, one per dimension, with content (nBins(integer), minValue(number),
0630    * maxValue(number), title(string)) for the default type of Axis
0631    *     + bins is an array of values
0632    *       - The length of the array is the product of (nBins+2) for all axis
0633    *       - the +2 is because the bin 0 is the one for values below minValue and bin nBins+1 is the one for values
0634    * above maxValue bins are stored row first so we iterate first on highest dimension
0635    *       - the value is a number for non profile histograms
0636    *       - the value is of the form ( (nEntries(integer), sum(number) ), sum2(number) ) for profile histograms
0637    *         Note the pair with a pair as first entry
0638    */
0639   template <unsigned int ND, atomicity Atomicity, typename Arithmetic, const char* Type,
0640             template <atomicity, typename, typename, typename> typename Accumulator, typename AxisTupleType>
0641   class HistogramingCounterBase;
0642   template <unsigned int ND, atomicity Atomicity, typename Arithmetic, const char* Type,
0643             template <atomicity, typename, typename, typename> typename Accumulator, typename... AxisTypes>
0644   class HistogramingCounterBase<ND, Atomicity, Arithmetic, Type, Accumulator, std::tuple<AxisTypes...>>
0645       : public BufferableCounter<Atomicity, Accumulator, Arithmetic, std::integral_constant<unsigned int, ND>,
0646                                  std::tuple<AxisTypes...>> {
0647   public:
0648     using AxisTupleType    = std::tuple<AxisTypes...>;
0649     using NumberDimensions = std::integral_constant<unsigned int, ND>;
0650     using Parent           = BufferableCounter<Atomicity, Accumulator, Arithmetic, NumberDimensions, AxisTupleType>;
0651     using AccumulatorType  = Accumulator<Atomicity, Arithmetic, NumberDimensions, AxisTupleType>;
0652     using AxisTupleArithmeticType = typename AccumulatorType::AxisTupleArithmeticType;
0653     /// for backward compatibility with previous implementation, should not be used FIXME
0654     using AxisArithmeticType = typename std::tuple_element<0, AxisTupleType>::type::ArithmeticType;
0655     inline static const std::string typeString{ std::string{ Type } + ':' + typeid( Arithmetic ).name() };
0656     /// This constructor takes the axis as a tuple
0657     template <typename OWNER>
0658     HistogramingCounterBase( OWNER* owner, std::string const& name, std::string const& title, AxisTupleType axis )
0659         : Parent( owner, name, *this, axis ), m_title( title ) {
0660       details::requireValidTitle( m_title );
0661     }
0662     /// This constructor takes the axis one by one, when ND >= 2. If ND = 1, the other one can be used
0663     template <typename OWNER>
0664     HistogramingCounterBase( OWNER* owner, std::string const& name, std::string const& title, AxisTypes... allAxis )
0665         : HistogramingCounterBase( owner, name, title, std::make_tuple( allAxis... ) ) {}
0666     using Parent::print;
0667     template <typename stream>
0668     stream& printImpl( stream& o, bool /*tableFormat*/ ) const {
0669       o << ND << "D Histogram with config ";
0670       std::apply( [&o]( auto&&... args ) { ( ( o << args << "\n" ), ... ); }, this->axis() );
0671       return o;
0672     }
0673     std::ostream& print( std::ostream& o, bool tableFormat = false ) const override {
0674       return printImpl( o, tableFormat );
0675     }
0676     MsgStream&   print( MsgStream& o, bool tableFormat = false ) const override { return printImpl( o, tableFormat ); }
0677     friend void  reset( HistogramingCounterBase& c ) { c.reset(); }
0678     friend void  mergeAndReset( HistogramingCounterBase& h, HistogramingCounterBase& o ) { h.mergeAndReset( o ); }
0679     friend void  to_json( nlohmann::json& j, HistogramingCounterBase const& h ) { h.to_json( j ); }
0680     virtual void to_json( nlohmann::json& j ) const {
0681       // get all bin values and compute total nbEntries
0682       std::vector<typename AccumulatorType::BaseAccumulator::OutputType> bins;
0683       bins.reserve( this->totNBins() );
0684       unsigned long totNEntries{ 0 };
0685       for ( unsigned int i = 0; i < this->totNBins(); i++ ) {
0686         bins.push_back( this->binValue( i ) );
0687         totNEntries += this->nEntries( i );
0688       }
0689       // build json
0690       j = { { "type", std::string( Type ) + ":" + typeid( Arithmetic ).name() },
0691             { "title", m_title },
0692             { "dimension", ND },
0693             { "empty", totNEntries == 0 },
0694             { "nEntries", totNEntries },
0695             { "axis", this->axis() },
0696             { "bins", bins } };
0697     }
0698     std::string const& title() const { return m_title; }
0699 
0700   protected:
0701     std::string const m_title;
0702   };
0703 
0704   namespace naming {
0705     inline constexpr char histogramString[]                = "histogram:Histogram";
0706     inline constexpr char weightedHistogramString[]        = "histogram:WeightedHistogram";
0707     inline constexpr char profilehistogramString[]         = "histogram:ProfileHistogram";
0708     inline constexpr char weightedProfilehistogramString[] = "histogram:WeightedProfileHistogram";
0709   } // namespace naming
0710 
0711   /// standard static histograming counter. See HistogramingCounterBase for details
0712   template <unsigned int ND, atomicity Atomicity = atomicity::full, typename Arithmetic = double,
0713             typename AxisTupleType = make_tuple_t<Axis<Arithmetic>, ND>>
0714   using StaticHistogram = HistogramingCounterBase<ND, Atomicity, Arithmetic, naming::histogramString,
0715                                                   HistogramingAccumulator, AxisTupleType>;
0716 
0717   /// standard static histograming counter with weight. See HistogramingCounterBase for details
0718   template <unsigned int ND, atomicity Atomicity = atomicity::full, typename Arithmetic = double,
0719             typename AxisTupleType = make_tuple_t<Axis<Arithmetic>, ND>>
0720   using StaticWeightedHistogram = HistogramingCounterBase<ND, Atomicity, Arithmetic, naming::weightedHistogramString,
0721                                                           WeightedHistogramingAccumulator, AxisTupleType>;
0722 
0723   /// profile static histograming counter. See HistogramingCounterBase for details
0724   template <unsigned int ND, atomicity Atomicity = atomicity::full, typename Arithmetic = double,
0725             typename AxisTupleType = make_tuple_t<Axis<Arithmetic>, ND>>
0726   using StaticProfileHistogram = HistogramingCounterBase<ND, Atomicity, Arithmetic, naming::profilehistogramString,
0727                                                          ProfileHistogramingAccumulator, AxisTupleType>;
0728 
0729   /// weighted static profile histograming counter. See HistogramingCounterBase for details
0730   template <unsigned int ND, atomicity Atomicity = atomicity::full, typename Arithmetic = double,
0731             typename AxisTupleType = make_tuple_t<Axis<Arithmetic>, ND>>
0732   using StaticWeightedProfileHistogram =
0733       HistogramingCounterBase<ND, Atomicity, Arithmetic, naming::weightedProfilehistogramString,
0734                               WeightedProfileHistogramingAccumulator, AxisTupleType>;
0735 
0736 } // namespace Gaudi::Accumulators