|
||||
File indexing completed on 2024-11-15 09:01:47
0001 // This file is part of the Acts project. 0002 // 0003 // Copyright (C) 2016-2020 CERN for the benefit of the Acts project 0004 // 0005 // This Source Code Form is subject to the terms of the Mozilla Public 0006 // License, v. 2.0. If a copy of the MPL was not distributed with this 0007 // file, You can obtain one at http://mozilla.org/MPL/2.0/. 0008 0009 #pragma once 0010 0011 #include "Acts/Definitions/Algebra.hpp" 0012 #include "Acts/Definitions/Tolerance.hpp" 0013 #include "Acts/Geometry/GeometryContext.hpp" 0014 #include "Acts/Geometry/Polyhedron.hpp" 0015 #include "Acts/Surfaces/BoundaryCheck.hpp" 0016 #include "Acts/Surfaces/InfiniteBounds.hpp" 0017 #include "Acts/Surfaces/PlanarBounds.hpp" 0018 #include "Acts/Surfaces/RegularSurface.hpp" 0019 #include "Acts/Surfaces/Surface.hpp" 0020 #include "Acts/Surfaces/SurfaceConcept.hpp" 0021 #include "Acts/Utilities/BinningType.hpp" 0022 #include "Acts/Utilities/Concepts.hpp" 0023 #include "Acts/Utilities/Result.hpp" 0024 0025 #include <cstddef> 0026 #include <limits> 0027 #include <memory> 0028 #include <string> 0029 0030 namespace Acts { 0031 0032 class DetectorElementBase; 0033 class PlanarBounds; 0034 class SurfaceBounds; 0035 0036 /// @class PlaneSurface 0037 /// 0038 /// Class for a planaer in the TrackingGeometry. 0039 /// 0040 /// The PlaneSurface extends the Surface class with the possibility to 0041 /// convert local to global positions (vice versa). 0042 /// 0043 /// @image html PlaneSurface.png 0044 /// 0045 class PlaneSurface : public RegularSurface { 0046 friend class Surface; 0047 0048 protected: 0049 /// Copy Constructor 0050 /// 0051 /// @param other is the source surface for the copy 0052 PlaneSurface(const PlaneSurface& other); 0053 0054 /// Copy constructor - with shift 0055 /// 0056 /// @param gctx The current geometry context object, e.g. alignment 0057 /// @param other is the source cone surface 0058 /// @param transform is the additional transform applied after copying 0059 PlaneSurface(const GeometryContext& gctx, const PlaneSurface& other, 0060 const Transform3& transform); 0061 0062 /// Dedicated Constructor with normal vector 0063 /// This is for curvilinear surfaces which are by definition boundless 0064 /// 0065 /// @param center is the center position of the surface 0066 /// @param normal is thenormal vector of the plane surface 0067 PlaneSurface(const Vector3& center, const Vector3& normal); 0068 0069 /// Constructor from DetectorElementBase : Element proxy 0070 /// 0071 /// @param pbounds are the provided planar bounds 0072 /// @param detelement is the linked detector element to this surface 0073 PlaneSurface(std::shared_ptr<const PlanarBounds> pbounds, 0074 const DetectorElementBase& detelement); 0075 0076 /// Constructor for Planes with (optional) shared bounds object 0077 /// 0078 /// @param transform transform in 3D that positions this surface 0079 /// @param pbounds bounds object to describe the actual surface area 0080 PlaneSurface(const Transform3& transform, 0081 std::shared_ptr<const PlanarBounds> pbounds = nullptr); 0082 0083 public: 0084 ~PlaneSurface() override = default; 0085 PlaneSurface() = delete; 0086 0087 /// Assignment operator 0088 /// 0089 /// @param other The source PlaneSurface for assignment 0090 PlaneSurface& operator=(const PlaneSurface& other); 0091 0092 // Use overloads from `RegularSurface` 0093 using RegularSurface::globalToLocal; 0094 using RegularSurface::localToGlobal; 0095 using RegularSurface::normal; 0096 0097 /// Get the normal vector of this surface at a given local position 0098 /// 0099 /// @param gctx The current geometry context object, e.g. alignment 0100 /// @param lposition is the local position is ignored 0101 /// 0102 /// return a Vector3 by value 0103 Vector3 normal(const GeometryContext& gctx, 0104 const Vector2& lposition) const final; 0105 0106 /// Get the normal vector of this surface at a given global position 0107 /// @note The @p position is required to be on-surface. 0108 /// @param gctx The current geometry context object, e.g. alignment 0109 /// @param position is the global positiono (for @ref PlaneSurface this is ignored) 0110 /// @return The normal vector 0111 Vector3 normal(const GeometryContext& gctx, 0112 const Vector3& position) const final; 0113 0114 /// Get the normal vector, independent of the location 0115 /// @param gctx The current geometry context object, e.g. alignment 0116 /// @return The normal vector 0117 Vector3 normal(const GeometryContext& gctx) const; 0118 0119 /// The binning position is the position calculated 0120 /// for a certain binning type 0121 /// 0122 /// @param gctx The current geometry context object, e.g. alignment 0123 /// @param bValue is the binning type to be used 0124 /// 0125 /// @return position that can beused for this binning 0126 Vector3 binningPosition(const GeometryContext& gctx, 0127 BinningValue bValue) const final; 0128 0129 /// Return the surface type 0130 SurfaceType type() const override; 0131 0132 /// Return method for bounds object of this surfrace 0133 const SurfaceBounds& bounds() const override; 0134 0135 /// Local to global transformation 0136 /// 0137 /// @note For planar surfaces the momentum direction is ignored in the local to global 0138 /// transformation 0139 /// 0140 /// @param gctx The current geometry context object, e.g. alignment 0141 /// @param lposition local 2D position in specialized surface frame 0142 /// 0143 /// @return the global position by value 0144 Vector3 localToGlobal(const GeometryContext& gctx, 0145 const Vector2& lposition) const override; 0146 0147 /// Global to local transformation 0148 /// 0149 /// @note For planar surfaces the momentum direction is ignored in the global to local 0150 /// transformation 0151 /// 0152 /// @param gctx The current geometry context object, e.g. alignment 0153 /// @param position global 3D position - considered to be on surface but not 0154 /// inside bounds (check is done) 0155 /// @param tolerance optional tolerance within which a point is considered 0156 /// valid on surface 0157 /// 0158 /// @return a Result<Vector2> which can be !ok() if the operation fails 0159 Result<Vector2> globalToLocal( 0160 const GeometryContext& gctx, const Vector3& position, 0161 double tolerance = s_onSurfaceTolerance) const override; 0162 0163 /// Method that calculates the correction due to incident angle 0164 /// 0165 /// @param gctx The current geometry context object, e.g. alignment 0166 /// @param position global 3D position (ignored for @ref PlaneSurface) 0167 /// @param direction global 3D momentum direction (ignored for @ref PlaneSurface) 0168 /// @return a double representing the scaling factor 0169 double pathCorrection(const GeometryContext& gctx, const Vector3& position, 0170 const Vector3& direction) const final; 0171 0172 /// @brief Straight line intersection 0173 /// 0174 /// @param gctx The current geometry context object, e.g. alignment 0175 /// @param position The start position of the intersection attempt 0176 /// @param direction The direction of the intersection attempt, 0177 /// (@note expected to be normalized) 0178 /// @param bcheck The boundary check directive 0179 /// @param tolerance the tolerance used for the intersection 0180 /// 0181 /// <b>mathematical motivation:</b> 0182 /// 0183 /// the equation of the plane is given by: <br> 0184 /// @f$ \vec n \cdot \vec x = \vec n \cdot \vec p,@f$ <br> 0185 /// where @f$ \vec n = (n_{x}, n_{y}, n_{z})@f$ denotes the normal vector of 0186 /// the plane, @f$ \vec p = (p_{x}, p_{y}, p_{z})@f$ one specific point 0187 /// on the plane and @f$ \vec x = (x,y,z) @f$ all possible points 0188 /// on the plane.<br> 0189 /// 0190 /// Given a line with:<br> 0191 /// @f$ \vec l(u) = \vec l_{1} + u \cdot \vec v @f$, <br> 0192 /// the solution for @f$ u @f$ can be written: 0193 /// @f$ u = \frac{\vec n (\vec p - \vec l_{1})}{\vec n \vec v}@f$ <br> 0194 /// If the denominator is 0 then the line lies: 0195 /// - either in the plane 0196 /// - perpendicular to the normal of the plane 0197 /// 0198 /// @return the @c SurfaceMultiIntersection object 0199 SurfaceMultiIntersection intersect( 0200 const GeometryContext& gctx, const Vector3& position, 0201 const Vector3& direction, 0202 const BoundaryCheck& bcheck = BoundaryCheck(false), 0203 ActsScalar tolerance = s_onSurfaceTolerance) const final; 0204 0205 /// Return a Polyhedron for the surfaces 0206 /// 0207 /// @param gctx The current geometry context object, e.g. alignment 0208 /// @param lseg Number of segments along curved lines, it represents 0209 /// the full 2*M_PI coverange, if lseg is set to 1 only the extrema 0210 /// are given 0211 /// 0212 /// @return A list of vertices and a face/facett description of it 0213 Polyhedron polyhedronRepresentation(const GeometryContext& gctx, 0214 std::size_t lseg) const override; 0215 0216 /// Return properly formatted class name for screen output 0217 std::string name() const override; 0218 0219 /// Calculate the derivative of bound track parameters local position w.r.t. 0220 /// position in local 3D Cartesian coordinates 0221 /// 0222 /// @param gctx The current geometry context object, e.g. alignment 0223 /// @param position The position of the parameters in global 0224 /// 0225 /// @return Derivative of bound local position w.r.t. position in local 3D 0226 /// cartesian coordinates 0227 ActsMatrix<2, 3> localCartesianToBoundLocalDerivative( 0228 const GeometryContext& gctx, const Vector3& position) const final; 0229 0230 protected: 0231 /// the bounds of this surface 0232 std::shared_ptr<const PlanarBounds> m_bounds; 0233 0234 private: 0235 }; 0236 0237 ACTS_STATIC_CHECK_CONCEPT(RegularSurfaceConcept, PlaneSurface); 0238 0239 } // end of namespace Acts
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |