![]() |
|
|||
File indexing completed on 2025-02-23 09:22:31
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // 0027 /// \file ExGflashHomoShowerTuning.hh 0028 /// \brief Definition of the ExGflashHomoShowerTuning class 0029 // 0030 // --------------------------------------------------------------- 0031 // GEANT 4 class header file 0032 // 0033 // ExGflashHomoShowerTuning 0034 // 0035 // Class description: 0036 // 0037 // Tuning class for GFlash homogeneous shower parameterisation. 0038 // Definitions: 0039 // <t>: shower center of gravity 0040 // T: Depth at shower maximum 0041 // Ec: Critical energy 0042 // X0: Radiation length 0043 // y = E/Ec 0044 // 0045 // Homogeneous media: 0046 // Average shower profile 0047 // (1/E)(dE(t)/dt) = f(t) 0048 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha) 0049 // where Gamma is the Gamma function 0050 // 0051 // <t> = alpha/beta 0052 // T = (alpha-1)/beta 0053 // and 0054 // T = ln(y) + t1 0055 // alpha = a1+(a2+a3/Z)ln(y) 0056 0057 // Author: J.P. Wellisch - October 2004 0058 //--------------------------------------------------------------- 0059 0060 #ifndef ExGflashHomoShowerTuning_hh 0061 #define ExGflashHomoShowerTuning_hh 0062 0063 #include "GVFlashHomoShowerTuning.hh" 0064 0065 class ExGflashHomoShowerTuning : public GVFlashHomoShowerTuning 0066 { 0067 public: 0068 ExGflashHomoShowerTuning() = default; 0069 ~ExGflashHomoShowerTuning() override = default; 0070 0071 public: // with description 0072 G4double ParAveT1() override { return -0.812; } // t1 0073 G4double ParAveA1() override { return 0.81; } // a1 0074 G4double ParAveA2() override { return 0.458; } // a2 0075 G4double ParAveA3() override { return 2.26; } // a3 0076 0077 G4double ParSigLogT1() override { return -1.4; } // t1 0078 G4double ParSigLogT2() override { return 1.26; } // t2 0079 // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y)) 0080 0081 G4double ParSigLogA1() override { return -0.58; } // a1 0082 G4double ParSigLogA2() override { return 0.86; } // a2 0083 // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y)) 0084 0085 G4double ParRho1() override { return 0.705; } // r1 0086 G4double ParRho2() override { return -0.023; } // r2 0087 // Correlation(ln(T),ln(alpha))=r1+r2*ln(y) 0088 0089 // Radial profiles 0090 // f(r) := (1/dE(t))(dE(t,r)/dr) 0091 // Ansatz: 0092 // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2, 0093 // 0<p<1 0094 0095 G4double ParRC1() override { return 0.0251; } // c1 0096 G4double ParRC2() override { return 0.00319; } // c2 0097 G4double ParRC3() override { return 0.1162; } // c3 0098 G4double ParRC4() override { return -0.000381; } // c4 0099 // Rc (t/T)= z1 +z2*t/T 0100 // z1 = c1+c2*ln(E/GeV) 0101 // z2 = c3+c4*Z 0102 0103 G4double ParRT1() override { return 0.659; } // t1 0104 G4double ParRT2() override { return -0.00309; } // t2 0105 G4double ParRT3() override { return 0.645; } // k2 0106 G4double ParRT4() override { return -2.59; } // k3 0107 G4double ParRT5() override { return 0.3585; } // t5 0108 G4double ParRT6() override { return 0.0412; } // t6 0109 // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2))) 0110 // k1 = t1+t2*Z 0111 // k4 = t5+t6*ln(E/GeV) 0112 0113 G4double ParWC1() override { return 2.632; } // c1 0114 G4double ParWC2() override { return -0.00094; } // c2 0115 G4double ParWC3() override { return 0.401; } // c3 0116 G4double ParWC4() override { return 0.00187; } // c4 0117 G4double ParWC5() override { return 1.313; } // c5 0118 G4double ParWC6() override { return -0.0686; } // c6 0119 // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3)) 0120 // p1 = c1+c2*Z 0121 // p2 = c3+c4*Z 0122 // p3 = c5 + c6*ln(E/GeV) 0123 0124 G4double ParSpotN1() override { return 93.; } // n1 0125 G4double ParSpotN2() override { return 0.876; } // n2 0126 // Fluctuations on radial profiles through number of spots 0127 // The total number of spots needed for a shower is 0128 // Ns = n1*ln(Z)(E/GeV)**n2 0129 0130 // The number of spots per longitudinal interval is: 0131 // (1/Ns)(dNs(t)/dt) = f(t) 0132 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha) 0133 // <t> = alpha_s/beta_s 0134 // Ts = (alpha_s-1)/beta_s 0135 // and 0136 // Ts = T*(t1+t2*Z) 0137 // alpha_s = alpha*(a1+a2*Z) 0138 0139 G4double ParSpotT1() override { return 0.698; } // t1 0140 G4double ParSpotT2() override { return 0.00212; } // t2 0141 0142 G4double ParSpotA1() override { return 0.639; } // a1 0143 G4double ParSpotA2() override { return 0.00334; } // a2 0144 }; 0145 0146 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |