Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-10-28 08:01:26

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 
0027 #ifdef USE_INFERENCE_TORCH
0028 #  include "Par04TorchInference.hh"
0029 
0030 #  include "Par04InferenceInterface.hh"  // for Par04InferenceInterface
0031 
0032 #  include <algorithm>  // for copy, max
0033 #  include <cassert>  // for assert
0034 #  include <cstddef>  // for size_t
0035 #  include <cstdint>  // for int64_t
0036 #  include <torch/torch.h>
0037 #  include <utility>  // for move
0038 
0039 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0040 
0041 Par04TorchInference::Par04TorchInference(G4String modelPath) : Par04InferenceInterface()
0042 {
0043   fModule = torch::jit::load(modelPath);
0044 }
0045 
0046 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0047 
0048 void Par04TorchInference::RunInference(std::vector<float> aGenVector,
0049                                        std::vector<G4double>& aEnergies, int aSize)
0050 {
0051   std::vector<torch::jit::IValue> genInput;
0052 
0053   if (aGenVector.size()!=8) {
0054     // VAE
0055     // latentSize : size of the latent space
0056     // 4 is the size of the condition vector
0057     int latentSize = aGenVector.size() - 4;
0058     // split into latent and condition vectors
0059     std::vector<float> latent;
0060     for (int i = 0; i < latentSize; i++) {
0061       latent.push_back(aGenVector[i]);
0062     }
0063     std::vector<float> energy;
0064     energy.push_back(aGenVector[latentSize + 1]);
0065     std::vector<float> angle;
0066     angle.push_back(aGenVector[latentSize + 2]);
0067     std::vector<float> geo;
0068     for (int i = latentSize + 2; i < latentSize + 4; i++) {
0069       geo.push_back(aGenVector[i]);
0070     }
0071 
0072     // convert vectors to tensors
0073     torch::Tensor latentVector = torch::tensor(latent);
0074     torch::Tensor eTensor = torch::tensor(energy);
0075     torch::Tensor angleTensor = torch::tensor(angle);
0076     torch::Tensor geoTensor = torch::tensor(geo);
0077 
0078     genInput.push_back(latentVector);
0079     genInput.push_back(eTensor);
0080     genInput.push_back(angleTensor);
0081     genInput.push_back(geoTensor);
0082   } else {
0083     // CaloDiT-2
0084     torch::Tensor conditions = torch::tensor(aGenVector);
0085     genInput.push_back(conditions);
0086   }
0087   // equivalent to torch.no_grad()
0088   torch::NoGradGuard no_grad;
0089 
0090   at::Tensor outTensor = fModule.forward(genInput).toTensor().contiguous();
0091 
0092   std::vector<G4double> output(outTensor.data_ptr<float>(),
0093                                outTensor.data_ptr<float>() + outTensor.numel());
0094 
0095   aEnergies.assign(aSize, 0);
0096   for (int i = 0; i < aSize; i++) {
0097     aEnergies[i] = output[i];
0098   }
0099 }
0100 
0101 #endif