Back to home page

EIC code displayed by LXR

 
 

    


Warning, /geant4/examples/extended/medical/dna/wvalue/README is written in an unsupported language. File is not indexed.

0001      =========================================================
0002                   Geant4 - wvalue example
0003      =========================================================
0004 
0005                                 README file
0006                           ----------------------
0007 
0008                            CORRESPONDING AUTHOR
0009 
0010 S. Incerti (a, *)
0011 a. LP2i, IN2P3 / CNRS / Bordeaux University, 33175 Gradignan, France
0012 * e-mail: incerti@lp2ib.in2p3.fr
0013 
0014 ---->0. INTRODUCTION.
0015 
0016 The wvalue example shows how to calculate w in liquid water
0017 for e- using the Geant4-DNA physics processes and models.
0018 
0019 w is computed as the ratio of the incident particle energy
0020 and the total number of ionisations.
0021 
0022 It is adapted from the svalue example.
0023 
0024 This example is provided by the Geant4-DNA collaboration.
0025 
0026 These processes and models are further described at:
0027 http://geant4-dna.org
0028 
0029 Any report or published results obtained using the Geant4-DNA software shall
0030 cite the following Geant4-DNA collaboration publications:
0031 Med. Phys. 45 (2018) e722-e739
0032 Phys. Med. 31 (2015) 861-874
0033 Med. Phys. 37 (2010) 4692-4708
0034 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
0035 
0036 This example is presented in the following paper, which shall also be cited:
0037 Med. Phys. 42 (2015) 3870-3876
0038 
0039 ---->1. GEOMETRY SET-UP.
0040 
0041 The geometry is a 1 m radius sphere of liquid water (G4_WATER
0042 material). Particles are shot randomly from the sphere centre.
0043 
0044 Radius of the sphere, physics constructor and energy can be
0045 controlled by the wvalue.in macro file.
0046 
0047 The PrimaryGeneratorAction class is adapted (G4 state dependent)
0048 in order to enable generic physics list usage
0049 (empty modular physics list).
0050 
0051 ---->2. SET-UP
0052 
0053 Make sure G4LEDATA points to the low energy electromagnetic data files.
0054 
0055 The code can be compiled with cmake.
0056 
0057 It works in MT mode.
0058 
0059 ---->3. HOW TO RUN THE EXAMPLE
0060 
0061 In interactive mode, run:
0062 
0063 ./wvalue wvalue.in
0064 
0065 The wvalue.in macro allows a full control of the simulation.
0066 
0067 ---->4. PHYSICS
0068 
0069 You can select Geant4-DNA physics constructor in wvalue.in.
0070 
0071 A tracking cut can be applied if requested.
0072 
0073 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS
0074 
0075 The output results consist in a text file (wvalue.txt), containing:
0076 - the energy of incident particles (in eV)
0077 - the mean number of ionisations
0078 - its rms
0079 - the w value (in eV)
0080 - its rms (in eV)
0081 
0082 Note: rms values correspond to standard deviation.
0083 
0084 In addition, another macro (histo.in) is also provided including
0085 a series of histograms:
0086 - histogram #1 : nb of ionisation interactions per event
0087 - histogram #2 : total energy deposited in absorber
0088 - histogram #3 : true track length of the primary particle
0089 - histogram #4 : true step size of the primary particle
0090 - histogram #5 : projected range of the primary particle
0091 - histogram #6 : true track length of charged secondaries
0092 - histogram #7 : true track length of charged secondaries