Warning, /geant4/examples/extended/medical/dna/radial/README is written in an unsupported language. File is not indexed.
0001 =========================================================
0002 Geant4 - radial example
0003 =========================================================
0004
0005 README file
0006 ----------------------
0007
0008 CORRESPONDING AUTHOR
0009
0010 S. Incerti (a, *)
0011 a. LP2i, IN2P3 / CNRS / Bordeaux University, 33175 Gradignan, France
0012 * e-mail: incerti@lp2ib.in2p3.fr
0013
0014 ---->0. INTRODUCTION
0015
0016 The radial example shows how to simulate radial dose profiles in liquid water
0017 from incident ions using the Geant4-DNA physics processes and models.
0018
0019 The Geant4-DNA processes and models are further described at:
0020 http://geant4-dna.org
0021
0022 Any report or published results obtained using the Geant4-DNA software shall
0023 cite the following Geant4-DNA collaboration publications:
0024 Med. Phys. 51 (2024) 5873–5889
0025 Med. Phys. 45 (2018) e722-e739
0026 Phys. Med. 31 (2015) 861-874
0027 Med. Phys. 37 (2010) 4692-4708
0028 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
0029
0030 ---->1. GEOMETRY SET-UP
0031
0032 The geometry is a set of cylindrical shells (hollow cylinders) made of liquid water
0033 (G4_WATER material) and aligned along the Z-axis. The World is an empty cylinder
0034 wrapping these shells and having the same maximum radius.
0035
0036 a) The maximum radius of the set can be specified using the following UI command:
0037
0038 /radial/setWorldRadius value unit
0039
0040 b) The Z length of the shells is the same as the length of the World and can be set using:
0041
0042 /radial/setWorldLength value unit
0043
0044 c) The thickness of each shell can be specified using the command:
0045
0046 /radial/setThicknessCylinders value unit
0047
0048 Particles are shot from the center of the entrance surface of the cylinders.
0049 The Z position is negative and is equal to the half-length of the World.
0050
0051 ---->2. DATA
0052
0053 Make sure $G4LEDATA points to the low-energy electromagnetic data files.
0054
0055 ---->3. HOW TO RUN THE EXAMPLE
0056
0057 In interactive mode, run:
0058
0059 ./radial
0060
0061 In batch, the macro radial.in can be used. It shows how to shoot different
0062 types of ions and how to use Geant4-DNA Physics constructors.
0063
0064 ---->4. PHYSICS
0065
0066 The PhysicsList uses Geant4-DNA Physics constructors.
0067
0068 Geant4-DNA Physics constructors can be selected using the command:
0069
0070 /radial/addPhysics DNA_OptX
0071
0072 where X is 0 to 8 (2, 4 or 6 are recommended).
0073
0074 Comments regarding ions:
0075
0076 - only the ionisation process is considered, and the radial absorbed dose is obtained
0077 considering all energy losses by secondary electrons
0078
0079 - when the incident particle type is ion (/gun/particle ion), specified with Z
0080 and A numbers (/gun/ion A Z), the Rudd ionisation extended model is used.
0081 The particles are tracked by default down to 0.5 MeV/u and undergo below a capture
0082 process. This tracking cut can be bypassed using:
0083
0084 /radial/addIonsTrackingCut false
0085
0086 ---->5. SIMULATION OUTPUT
0087
0088 The output results consist in a ROOT radial.root file, containing an ntuple, named
0089 "radial" and containing the absorbed dose for each cylinder, identified by its
0090 inner radius, per incident ion.
0091
0092 The ROOT macro file plot.C can be used to draw the radial dose profile.