Warning, /geant4/examples/extended/medical/dna/microdosimetry/README is written in an unsupported language. File is not indexed.
0001 =========================================================
0002 Geant4 - microdosimetry example
0003 =========================================================
0004
0005 README file
0006 ----------------------
0007
0008 CORRESPONDING AUTHOR
0009
0010 S. Incerti (a, *), H. Tran (a, *), V. Ivantchenko (b), M. Karamitros
0011 a. LP2i, IN2P3 / CNRS / Bordeaux University, 33175 Gradignan, France
0012 b. G4AI Ltd., UK
0013 * e-mail: incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr
0014
0015 ---->0. INTRODUCTION
0016
0017 The microdosimetry example shows how to use Geant4 and Geant4-DNA physics models
0018 in different regions of the geometry.
0019
0020 The Geant4-DNA processes and models are further described at:
0021 http://geant4-dna.org
0022
0023 Any report or published results obtained using the Geant4-DNA software shall
0024 cite the following Geant4-DNA collaboration publications:
0025 Med. Phys. 51 (2024) 5873–5889
0026 Med. Phys. 45 (2018) e722-e739
0027 Phys. Med. 31 (2015) 861-874
0028 Med. Phys. 37 (2010) 4692-4708
0029 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
0030
0031 ---->1. GEOMETRY SET-UP
0032
0033 The geometry is a 10-micron side cube (World) made of liquid water (G4_WATER
0034 material) containing a 2 micron-thick slice (along X) of water (Target).
0035
0036 Particles are shot from the World volume.
0037
0038 The variable density feature of materials is illustrated in DetectorConstruction.
0039 The material can be changed directly in microdosimetry.in macro file.
0040
0041 ---->2. SET-UP
0042
0043 Make sure $G4LEDATA points to the low energy electromagnetic data files.
0044
0045 ---->3. HOW TO RUN THE EXAMPLE
0046
0047 In interactive mode, run:
0048
0049 ./microdosimetry
0050
0051 In batch, the macro microdosimetry.in can be used. It shows how to shoot different
0052 particle types.
0053
0054 ---->4. PHYSICS
0055
0056 The PhysicsList uses Geant4 Physics in the World region and Geant4-DNA Physics
0057 in the Target region.
0058
0059 1) Geant4 Physics in the World is selected via the command:
0060
0061 /dna/test/addPhysics X
0062
0063 where X is any EM physics list, such as emstandard_opt4 (see PhysicsList.cc).
0064
0065 2) Geant4-DNA activator is used in the regionTarget region using:
0066
0067 /process/em/AddDNARegion regionTarget DNA_OptY
0068
0069 where Y = 0, 2, 4, or 6.
0070
0071 3) In addition to 1) or 2), to enable radioactive decay, one can use:
0072
0073 /dna/test/addPhysics raddecay
0074
0075 4) Warning regarding ions: when the incident particle type is ion
0076 (/gun/particle ion), specified with Z and A numbers (/gun/ion A Z),
0077 the Rudd ionisation extended model is used. The particles are tracked
0078 by default down to 0.5 MeV/u. This tracking cut can be bypassed using :
0079
0080 /dna/test/addIonsTrackingCut false
0081
0082
0083 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS
0084
0085 The output results consists in a dna.root file, containing for each simulation step:
0086 - the type of particle for the current step
0087 - the type of process for the current step
0088 - the step PostStepPoint coordinates (in nm)
0089 - the energy deposit along the current step (in eV)
0090 - the step length (in nm)
0091 - the total energy loss along the current step (in eV)
0092 - the kinetic energy at PreStepPoint (in eV)
0093 - the cos of the scattering angle
0094 - the event ID
0095 - the track ID
0096 - the parent track ID
0097 - the step number
0098
0099 This information is extracted from the SteppingAction class.
0100
0101 The ROOT file can be easily analyzed using for example the provided ROOT macro
0102 file plot.C; to do so :
0103 * be sure to have ROOT installed on your machine
0104 * be sure to be in the directory containing the ROOT files created by microdosimetry
0105 * copy plot.C into this directory
0106 * from there, launch ROOT by typing root
0107 * under your ROOT session, type in : .X plot.C to execute the macro file
0108 * alternatively you can type directly under your session : root plot.C
0109
0110 The naming scheme on the displayed ROOT plots is as follows (see SteppingAction.cc):
0111
0112 -particles
0113
0114 gamma: 0
0115 e-: 1
0116 proton: 2
0117 hydrogen: 3
0118 alpha: 4
0119 alpha+: 5
0120 helium: 6
0121
0122 -processes
0123
0124 Capture: 1
0125 (only if one uses G4EmmicrodosimetryActivator in PhysicsList)
0126
0127 e-_G4DNAElectronSolvation: 10
0128 e-_G4DNAElastic: 11
0129 e-_G4DNAExcitation: 12
0130 e-_G4DNAIonisation: 13
0131 e-_G4DNAAttachment: 14
0132 e-_G4DNAVibExcitation: 15
0133 msc: 110
0134 CoulombScat: 120
0135 eIoni: 130
0136
0137 proton_G4DNAElastic: 21
0138 proton_G4DNAExcitation: 22
0139 proton_G4DNAIonisation: 23
0140 proton_G4DNAChargeDecrease: 24
0141 msc: 210
0142 CoulombScat: 220
0143 hIoni: 230
0144 nuclearStopping: 240
0145
0146 hydrogen_G4DNAElastic: 31
0147 hydrogen_G4DNAExcitation: 32
0148 hydrogen_G4DNAIonisation: 33
0149 hydrogen_G4DNAChargeIncrease: 35
0150
0151 alpha_G4DNAElastic: 41
0152 alpha_G4DNAExcitation: 42
0153 alpha_G4DNAIonisation: 43
0154 alpha_G4DNAChargeDecrease: 44
0155 msc: 410
0156 CoulombScat: 420
0157 ionIoni: 430
0158 nuclearStopping: 440
0159
0160 alpha+_G4DNAElastic: 51
0161 alpha+_G4DNAExcitation: 52
0162 alpha+_G4DNAIonisation: 53
0163 alpha+_G4DNAChargeDecrease: 54
0164 alpha+_G4DNAChargeIncrease: 55
0165 msc: 510
0166 CoulombScat: 520
0167 hIoni: 530
0168 nuclearStopping: 540
0169
0170 helium_G4DNAElastic: 61
0171 helium_G4DNAExcitation: 62
0172 helium_G4DNAIonisation: 63
0173 helium_G4DNAChargeIncrease: 65
0174
0175 GenericIon_G4DNAIonisation: 73
0176 msc: 710
0177 CoulombSca: 720
0178 ionIoni: 730
0179 nuclearStopping: 740
0180
0181 phot: 81
0182 compt: 82
0183 conv: 83
0184 Rayl: 84
0185
0186 ---------------------------------------------------------------------------
0187
0188 Should you have any enquiry, please do not hesitate to contact:
0189 incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr