Warning, /geant4/examples/extended/medical/dna/microdosimetry/README is written in an unsupported language. File is not indexed.
0001 =========================================================
0002 Geant4 - microdosimetry example
0003 =========================================================
0004
0005 README file
0006 ----------------------
0007
0008 CORRESPONDING AUTHOR
0009
0010 S. Incerti (a, *), H. Tran (a, *), V. Ivantchenko (b), M. Karamitros
0011 a. LP2i, IN2P3 / CNRS / Bordeaux University, 33175 Gradignan, France
0012 b. G4AI Ltd., UK
0013 * e-mail: incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr
0014
0015 ---->0. INTRODUCTION
0016
0017 The microdosimetry example shows how to use Geant4 and Geant4-DNA physics models
0018 in different regions of the geometry.
0019
0020 The Geant4-DNA processes and models are further described at:
0021 http://geant4-dna.org
0022
0023 Any report or published results obtained using the Geant4-DNA software shall
0024 cite the following Geant4-DNA collaboration publications:
0025 Med. Phys. 45, (2018) e722-e739
0026 Phys. Med. 31 (2015) 861-874
0027 Med. Phys. 37 (2010) 4692-4708
0028 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
0029
0030 ---->1. GEOMETRY SET-UP
0031
0032 The geometry is a 10-micron side cube (World) made of liquid water (G4_WATER
0033 material) containing a 2 micron-thick slice (along X) of water (Target).
0034
0035 Particles are shot from the World volume.
0036
0037 The variable density feature of materials is illustrated in DetectorConstruction.
0038 The material can be changed directly in microdosimetry.in macro file.
0039
0040 ---->2. SET-UP
0041
0042 Make sure $G4LEDATA points to the low energy electromagnetic data files.
0043
0044 ---->3. HOW TO RUN THE EXAMPLE
0045
0046 In interactive mode, run:
0047
0048 ./microdosimetry
0049
0050 In batch, the macro microdosimetry.in can be used. It shows how to shoot different
0051 particle types.
0052
0053 ---->4. PHYSICS
0054
0055 The PhysicsList uses Geant4 Physics in the World region and Geant4-DNA Physics
0056 in the Target region.
0057
0058 1) Geant4 Physics in the World is selected via the command:
0059
0060 /dna/test/addPhysics X
0061
0062 where X is any EM physics list, such as emstandard_opt4 (see PhysicsList.cc).
0063
0064 2) Geant4-DNA activator is used in the regionTarget region using:
0065
0066 /process/em/AddDNARegion regionTarget DNA_OptY
0067
0068 where Y = 0, 2, 4, or 6.
0069
0070 3) In addition to 1) or 2), to enable radioactive decay, one can use:
0071
0072 /dna/test/addPhysics raddecay
0073
0074 4) Warning regarding ions: when the incident particle type is ion
0075 (/gun/particle ion), specified with Z and A numbers (/gun/ion A Z),
0076 the Rudd ionisation extended model is used. The particles are tracked
0077 by default down to 0.5 MeV/u. This tracking cut can be bypassed using :
0078
0079 /dna/test/addIonsTrackingCut false
0080
0081
0082 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS
0083
0084 The output results consists in a dna.root file, containing for each simulation step:
0085 - the type of particle for the current step
0086 - the type of process for the current step
0087 - the step PostStepPoint coordinates (in nm)
0088 - the energy deposit along the current step (in eV)
0089 - the step length (in nm)
0090 - the total energy loss along the current step (in eV)
0091 - the kinetic energy at PreStepPoint (in eV)
0092 - the cos of the scattering angle
0093 - the event ID
0094 - the track ID
0095 - the parent track ID
0096 - the step number
0097
0098 This information is extracted from the SteppingAction class.
0099
0100 The ROOT file can be easily analyzed using for example the provided ROOT macro
0101 file plot.C; to do so :
0102 * be sure to have ROOT installed on your machine
0103 * be sure to be in the directory containing the ROOT files created by microdosimetry
0104 * copy plot.C into this directory
0105 * from there, launch ROOT by typing root
0106 * under your ROOT session, type in : .X plot.C to execute the macro file
0107 * alternatively you can type directly under your session : root plot.C
0108
0109 The naming scheme on the displayed ROOT plots is as follows (see SteppingAction.cc):
0110
0111 -particles
0112
0113 gamma: 0
0114 e-: 1
0115 proton: 2
0116 hydrogen: 3
0117 alpha: 4
0118 alpha+: 5
0119 helium: 6
0120
0121 -processes
0122
0123 Capture: 1
0124 (only if one uses G4EmmicrodosimetryActivator in PhysicsList)
0125
0126 e-_G4DNAElectronSolvation: 10
0127 e-_G4DNAElastic: 11
0128 e-_G4DNAExcitation: 12
0129 e-_G4DNAIonisation: 13
0130 e-_G4DNAAttachment: 14
0131 e-_G4DNAVibExcitation: 15
0132 msc: 110
0133 CoulombScat: 120
0134 eIoni: 130
0135
0136 proton_G4DNAElastic: 21
0137 proton_G4DNAExcitation: 22
0138 proton_G4DNAIonisation: 23
0139 proton_G4DNAChargeDecrease: 24
0140 msc: 210
0141 CoulombScat: 220
0142 hIoni: 230
0143 nuclearStopping: 240
0144
0145 hydrogen_G4DNAElastic: 31
0146 hydrogen_G4DNAExcitation: 32
0147 hydrogen_G4DNAIonisation: 33
0148 hydrogen_G4DNAChargeIncrease: 35
0149
0150 alpha_G4DNAElastic: 41
0151 alpha_G4DNAExcitation: 42
0152 alpha_G4DNAIonisation: 43
0153 alpha_G4DNAChargeDecrease: 44
0154 msc: 410
0155 CoulombScat: 420
0156 ionIoni: 430
0157 nuclearStopping: 440
0158
0159 alpha+_G4DNAElastic: 51
0160 alpha+_G4DNAExcitation: 52
0161 alpha+_G4DNAIonisation: 53
0162 alpha+_G4DNAChargeDecrease: 54
0163 alpha+_G4DNAChargeIncrease: 55
0164 msc: 510
0165 CoulombScat: 520
0166 hIoni: 530
0167 nuclearStopping: 540
0168
0169 helium_G4DNAElastic: 61
0170 helium_G4DNAExcitation: 62
0171 helium_G4DNAIonisation: 63
0172 helium_G4DNAChargeIncrease: 65
0173
0174 GenericIon_G4DNAIonisation: 73
0175 msc: 710
0176 CoulombSca: 720
0177 ionIoni: 730
0178 nuclearStopping: 740
0179
0180 phot: 81
0181 compt: 82
0182 conv: 83
0183 Rayl: 84
0184
0185 ---------------------------------------------------------------------------
0186
0187 Should you have any enquiry, please do not hesitate to contact:
0188 incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr