Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-04-04 08:05:17

0001 //
0002 // ********************************************************************
0003 // * License and Disclaimer                                           *
0004 // *                                                                  *
0005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
0006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
0007 // * conditions of the Geant4 Software License,  included in the file *
0008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
0009 // * include a list of copyright holders.                             *
0010 // *                                                                  *
0011 // * Neither the authors of this software system, nor their employing *
0012 // * institutes,nor the agencies providing financial support for this *
0013 // * work  make  any representation or  warranty, express or implied, *
0014 // * regarding  this  software system or assume any liability for its *
0015 // * use.  Please see the license in the file  LICENSE  and URL above *
0016 // * for the full disclaimer and the limitation of liability.         *
0017 // *                                                                  *
0018 // * This  code  implementation is the result of  the  scientific and *
0019 // * technical work of the GEANT4 collaboration.                      *
0020 // * By using,  copying,  modifying or  distributing the software (or *
0021 // * any work based  on the software)  you  agree  to acknowledge its *
0022 // * use  in  resulting  scientific  publications,  and indicate your *
0023 // * acceptance of all terms of the Geant4 Software license.          *
0024 // ********************************************************************
0025 //
0026 /// \file Run.cc
0027 /// \brief Implementation of the Run class
0028 //
0029 //
0030 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0031 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0032 
0033 #include "Run.hh"
0034 
0035 #include "DetectorConstruction.hh"
0036 #include "HistoManager.hh"
0037 #include "PrimaryGeneratorAction.hh"
0038 
0039 #include "G4SystemOfUnits.hh"
0040 #include "G4UnitsTable.hh"
0041 
0042 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0043 
0044 Run::Run(DetectorConstruction* det) : fDetector(det) {}
0045 
0046 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0047 
0048 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy)
0049 {
0050   fParticle = particle;
0051   fEkin = energy;
0052 }
0053 
0054 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0055 
0056 void Run::CountProcesses(const G4VProcess* process)
0057 {
0058   if (process == nullptr) return;
0059   G4String procName = process->GetProcessName();
0060   std::map<G4String, G4int>::iterator it = fProcCounter.find(procName);
0061   if (it == fProcCounter.end()) {
0062     fProcCounter[procName] = 1;
0063   }
0064   else {
0065     fProcCounter[procName]++;
0066   }
0067 }
0068 
0069 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0070 
0071 void Run::ParticleCount(G4String name, G4double Ekin, G4double meanLife)
0072 {
0073   std::map<G4String, ParticleData>::iterator it = fParticleDataMap1.find(name);
0074   if (it == fParticleDataMap1.end()) {
0075     fParticleDataMap1[name] = ParticleData(1, Ekin, Ekin, Ekin, meanLife);
0076   }
0077   else {
0078     ParticleData& data = it->second;
0079     data.fCount++;
0080     data.fEmean += Ekin;
0081     // update min max
0082     G4double emin = data.fEmin;
0083     if (Ekin < emin) data.fEmin = Ekin;
0084     G4double emax = data.fEmax;
0085     if (Ekin > emax) data.fEmax = Ekin;
0086     data.fTmean = meanLife;
0087   }
0088 }
0089 
0090 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0091 
0092 void Run::SumEnergies(G4double edep, G4double eflow, G4double etot)
0093 {
0094   fEnergyDeposit += edep;
0095   fEnergyDeposit2 += edep * edep;
0096 
0097   fEnergyFlow += eflow;
0098   fEnergyFlow2 += eflow * eflow;
0099 
0100   fEnergyTotal += etot;
0101   fEnergyTotal2 += etot * etot;
0102 }
0103 
0104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0105 
0106 void Run::ParticleFlux(G4String name, G4double Ekin)
0107 {
0108   std::map<G4String, ParticleData>::iterator it = fParticleDataMap2.find(name);
0109   if (it == fParticleDataMap2.end()) {
0110     fParticleDataMap2[name] = ParticleData(1, Ekin, Ekin, Ekin, -1 * ns);
0111   }
0112   else {
0113     ParticleData& data = it->second;
0114     data.fCount++;
0115     data.fEmean += Ekin;
0116     // update min max
0117     G4double emin = data.fEmin;
0118     if (Ekin < emin) data.fEmin = Ekin;
0119     G4double emax = data.fEmax;
0120     if (Ekin > emax) data.fEmax = Ekin;
0121     data.fTmean = -1 * ns;
0122   }
0123 }
0124 
0125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0126 
0127 void Run::Merge(const G4Run* run)
0128 {
0129   const Run* localRun = static_cast<const Run*>(run);
0130 
0131   // primary particle info
0132   //
0133   fParticle = localRun->fParticle;
0134   fEkin = localRun->fEkin;
0135 
0136   // accumulate sums
0137   //
0138   fEnergyDeposit += localRun->fEnergyDeposit;
0139   fEnergyDeposit2 += localRun->fEnergyDeposit2;
0140   fEnergyFlow += localRun->fEnergyFlow;
0141   fEnergyFlow2 += localRun->fEnergyFlow2;
0142   fEnergyTotal += localRun->fEnergyTotal;
0143   fEnergyTotal2 += localRun->fEnergyTotal2;
0144 
0145   // map: processes count
0146   std::map<G4String, G4int>::const_iterator itp;
0147   for (itp = localRun->fProcCounter.begin(); itp != localRun->fProcCounter.end(); ++itp) {
0148     G4String procName = itp->first;
0149     G4int localCount = itp->second;
0150     if (fProcCounter.find(procName) == fProcCounter.end()) {
0151       fProcCounter[procName] = localCount;
0152     }
0153     else {
0154       fProcCounter[procName] += localCount;
0155     }
0156   }
0157 
0158   // map: created particles count
0159   std::map<G4String, ParticleData>::const_iterator itc;
0160   for (itc = localRun->fParticleDataMap1.begin(); itc != localRun->fParticleDataMap1.end(); ++itc) {
0161     G4String name = itc->first;
0162     const ParticleData& localData = itc->second;
0163     if (fParticleDataMap1.find(name) == fParticleDataMap1.end()) {
0164       fParticleDataMap1[name] = ParticleData(localData.fCount, localData.fEmean, localData.fEmin,
0165                                              localData.fEmax, localData.fTmean);
0166     }
0167     else {
0168       ParticleData& data = fParticleDataMap1[name];
0169       data.fCount += localData.fCount;
0170       data.fEmean += localData.fEmean;
0171       G4double emin = localData.fEmin;
0172       if (emin < data.fEmin) data.fEmin = emin;
0173       G4double emax = localData.fEmax;
0174       if (emax > data.fEmax) data.fEmax = emax;
0175       data.fTmean = localData.fTmean;
0176     }
0177   }
0178 
0179   // map: particles flux count
0180   std::map<G4String, ParticleData>::const_iterator itn;
0181   for (itn = localRun->fParticleDataMap2.begin(); itn != localRun->fParticleDataMap2.end(); ++itn) {
0182     G4String name = itn->first;
0183     const ParticleData& localData = itn->second;
0184     if (fParticleDataMap2.find(name) == fParticleDataMap2.end()) {
0185       fParticleDataMap2[name] = ParticleData(localData.fCount, localData.fEmean, localData.fEmin,
0186                                              localData.fEmax, localData.fTmean);
0187     }
0188     else {
0189       ParticleData& data = fParticleDataMap2[name];
0190       data.fCount += localData.fCount;
0191       data.fEmean += localData.fEmean;
0192       G4double emin = localData.fEmin;
0193       if (emin < data.fEmin) data.fEmin = emin;
0194       G4double emax = localData.fEmax;
0195       if (emax > data.fEmax) data.fEmax = emax;
0196       data.fTmean = localData.fTmean;
0197     }
0198   }
0199 
0200   G4Run::Merge(run);
0201 }
0202 
0203 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
0204 
0205 void Run::EndOfRun()
0206 {
0207   G4int prec = 5, wid = prec + 2;
0208   G4int dfprec = G4cout.precision(prec);
0209 
0210   // run condition
0211   //
0212   G4Material* material = fDetector->GetMaterial();
0213   G4double density = material->GetDensity();
0214 
0215   G4String Particle = fParticle->GetParticleName();
0216   G4cout << "\n The run is " << numberOfEvent << " " << Particle << " of "
0217          << G4BestUnit(fEkin, "Energy") << " through "
0218          << G4BestUnit(fDetector->GetRadius(), "Length") << " of " << material->GetName()
0219          << " (density: " << G4BestUnit(density, "Volumic Mass") << ")" << G4endl;
0220 
0221   if (numberOfEvent == 0) {
0222     G4cout.precision(dfprec);
0223     return;
0224   }
0225 
0226   // frequency of processes
0227   //
0228   G4cout << "\n Process calls frequency :" << G4endl;
0229   G4int index = 0;
0230   std::map<G4String, G4int>::iterator it;
0231   for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) {
0232     G4String procName = it->first;
0233     G4int count = it->second;
0234     G4String space = " ";
0235     if (++index % 3 == 0) space = "\n";
0236     G4cout << " " << std::setw(20) << procName << "=" << std::setw(7) << count << space;
0237   }
0238   G4cout << G4endl;
0239 
0240   // compute mean Energy deposited and rms
0241   //
0242   G4int TotNbofEvents = numberOfEvent;
0243   fEnergyDeposit /= TotNbofEvents;
0244   fEnergyDeposit2 /= TotNbofEvents;
0245   G4double rmsEdep = fEnergyDeposit2 - fEnergyDeposit * fEnergyDeposit;
0246   if (rmsEdep > 0.)
0247     rmsEdep = std::sqrt(rmsEdep);
0248   else
0249     rmsEdep = 0.;
0250 
0251   G4cout << "\n Mean energy deposit per event = " << G4BestUnit(fEnergyDeposit, "Energy")
0252          << ";  rms = " << G4BestUnit(rmsEdep, "Energy") << G4endl;
0253 
0254   // compute mean Energy leakage and rms
0255   //
0256   fEnergyFlow /= TotNbofEvents;
0257   fEnergyFlow2 /= TotNbofEvents;
0258   G4double rmsEflow = fEnergyFlow2 - fEnergyFlow * fEnergyFlow;
0259   if (rmsEflow > 0.)
0260     rmsEflow = std::sqrt(rmsEflow);
0261   else
0262     rmsEflow = 0.;
0263 
0264   G4cout << " Mean energy leakage per event = " << G4BestUnit(fEnergyFlow, "Energy")
0265          << ";  rms = " << G4BestUnit(rmsEflow, "Energy") << G4endl;
0266 
0267   // energy balance
0268   //
0269   fEnergyTotal /= TotNbofEvents;
0270   fEnergyTotal2 /= TotNbofEvents;
0271   G4double rmsEtotal = fEnergyTotal2 - fEnergyTotal * fEnergyTotal;
0272   if (rmsEtotal > 0.)
0273     rmsEtotal = std::sqrt(rmsEtotal);
0274   else
0275     rmsEflow = 0.;
0276 
0277   G4cout << "\n Mean energy total   per event = " << G4BestUnit(fEnergyTotal, "Energy")
0278          << ";  rms = " << G4BestUnit(rmsEtotal, "Energy") << G4endl;
0279 
0280   // particles at creation
0281   //
0282   if (fParticleDataMap1.size() > 0) {
0283     G4cout << "\n List of particles at creation :" << G4endl;
0284     std::map<G4String, ParticleData>::iterator itc;
0285     for (itc = fParticleDataMap1.begin(); itc != fParticleDataMap1.end(); itc++) {
0286       G4String name = itc->first;
0287       ParticleData data = itc->second;
0288       G4int count = data.fCount;
0289       G4double eMean = data.fEmean / count;
0290       G4double eMin = data.fEmin;
0291       G4double eMax = data.fEmax;
0292       G4double meanLife = data.fTmean;
0293 
0294       G4cout << "  " << std::setw(13) << name << ": " << std::setw(7) << count
0295              << "  Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") << "\t( "
0296              << G4BestUnit(eMin, "Energy") << " --> " << G4BestUnit(eMax, "Energy") << ")";
0297       if (meanLife >= 0.)
0298         G4cout << "\tmean life = " << G4BestUnit(meanLife, "Time") << G4endl;
0299       else
0300         G4cout << "\tstable" << G4endl;
0301     }
0302   }
0303 
0304   // emerging particles
0305   //
0306   G4cout << "\n List of particles emerging from the absorber :" << G4endl;
0307 
0308   std::map<G4String, ParticleData>::iterator itn;
0309   for (itn = fParticleDataMap2.begin(); itn != fParticleDataMap2.end(); itn++) {
0310     G4String name = itn->first;
0311     ParticleData data = itn->second;
0312     G4int count = data.fCount;
0313     G4double eMean = data.fEmean / count;
0314     G4double eMin = data.fEmin;
0315     G4double eMax = data.fEmax;
0316     G4double Eflow = data.fEmean / TotNbofEvents;
0317 
0318     G4cout << "  " << std::setw(13) << name << ": " << std::setw(7) << count
0319            << "  Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") << "\t( "
0320            << G4BestUnit(eMin, "Energy") << " --> " << G4BestUnit(eMax, "Energy")
0321            << ") \tEleak/event = " << G4BestUnit(Eflow, "Energy") << G4endl;
0322   }
0323 
0324   // normalize histograms
0325   G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
0326 
0327   G4int ih = 2;
0328   G4double binWidth = analysisManager->GetH1Width(ih);
0329   G4double fac = (1. / (numberOfEvent * binWidth)) * (mm / MeV);
0330   analysisManager->ScaleH1(ih, fac);
0331 
0332   // remove all contents in fProcCounter, fCount
0333   fProcCounter.clear();
0334   fParticleDataMap2.clear();
0335 
0336   // restore default format
0337   G4cout.precision(dfprec);
0338 }
0339 
0340 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......