Back to home page

EIC code displayed by LXR

 
 

    


Warning, /geant4/examples/extended/electromagnetic/TestEm15/README is written in an unsupported language. File is not indexed.

0001 -------------------------------------------------------------------
0002 
0003      =========================================================
0004      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
0005      =========================================================
0006 
0007                             TestEm15
0008                             --------
0009 
0010         How to compute and plot the final state of:
0011          - Multiple Scattering
0012          - Gamma Conversion
0013         considered as an isolated processes, see PHYSICS.
0014 
0015         For Multiple Scattering, the method is exposed below.
0016 
0017         For Gamma Conversion, when G4BetheHeitler5DModel Model is used.
0018 
0019  1- GEOMETRY DEFINITION
0020 
0021         It is a single box representing a 'semi infinite' homogeneous medium.
0022         Two parameters define the geometry:
0023         - the material of the box,
0024         - the (full) size of the box.
0025 
0026         The default geometry (100 m of water) is constructed in
0027         DetectorConstruction, but the above parameters can be changed
0028         interactively via the commands defined in DetectorMessenger.
0029 
0030  2- PHYSICS LIST
0031 
0032         The physics list contains the standard electromagnetic processes.
0033         In order not to introduce 'artificial' constraints on the step size,
0034         there is no limitation from the maximum energy lost per step.
0035 
0036  3- AN EVENT: THE PRIMARY GENERATOR
0037 
0038         The primary kinematic consists of a single particle starting at the edge
0039         of the box. The type of the particle and its energy are set in
0040         PrimaryGeneratorAction (1 MeV electron), and can be changed via the G4
0041         build-in commands of ParticleGun class (see the macros provided with
0042         this example).
0043 
0044  4- PHYSICS
0045 
0046         All discrete processes are inactivated (see provided macros),
0047         so that Multiple Scattering or Gamma Conversion is 'forced' to
0048         determine the first step of the primary particle.
0049         The step size and the final state are computed  and plotted.
0050         Then the event is immediately killed.
0051 
0052         Multiple Scattering:
0053 
0054         The result is compared with the 'input' data, i.e. with the cross
0055         sections stored in the PhysicsTables and used by Geant4.
0056         The stepMax command provides an additional control of the step size of
0057         the multiple scattering.
0058 
0059 
0060  5- HISTOGRAMS
0061 
0062         The test contains 16 built-in 1D histograms, which are managed by
0063         G4AnalysisManager and its Messenger. The histos can be individually
0064         activated with the command:
0065         /analysis/h1/set id nbBins  valMin valMax unit
0066         where unit is the desired unit for the histo (MeV or keV, etc..)
0067         (see the macros xxxx.mac).
0068 
0069         1       Multiple Scattering. True step length
0070         2       Multiple Scattering. Geom step length
0071         3       Multiple Scattering. Ratio geomSl/trueSl
0072         4       Multiple Scattering. Lateral displacement: radius
0073         5       Multiple Scattering. Lateral displac: psi_space
0074         6       Multiple Scattering. Angular distrib: theta_plane
0075         7       Multiple Scattering. Phi-position angle
0076         8       Multiple Scattering. Phi-direction angle
0077         9       Multiple Scattering. Correlation: cos(phiPos-phiDir)
0078 
0079         10      Gamma Conversion. Open Angle * Egamma
0080         11      Gamma Conversion. Log10(P recoil)
0081         12      Gamma Conversion. Phi P recoil angle
0082         13      Gamma Conversion. Phi P plus angle
0083         14      Gamma Conversion. 2 * cos(phiplus + phiminus) Asymmetry
0084         15      Gamma Conversion. E plus / E gamma
0085         16      Gamma Conversion. Phi of Gamma Polarization
0086 
0087 
0088    The histograms are managed by the HistoManager class and its Messenger.
0089    The histos can be individually activated with the command:
0090    /analysis/h1/set id nbBins  valMin valMax unit
0091    where unit is the desired unit for the histo (MeV or keV, deg or mrad, etc..)
0092 
0093    One can control the name of the histograms file with the command:
0094    /analysis/setFileName  name  (default testem15)
0095 
0096    It is possible to choose the format of the histogram file : root (default),
0097    hdf5, xml, csv, by changing the default file type in HistoManager.cc
0098 
0099    It is also possible to print selected histograms on an ascii file:
0100    /analysis/h1/setAscii id
0101    All selected histos will be written on a file name.ascii (default testem15)
0102 
0103  6- VISUALIZATION
0104 
0105         The Visualization Manager is set in the main().
0106         The initialization of the drawing is done via the commands
0107         /vis/... in the macro vis.mac. To get visualization:
0108         > /control/execute vis.mac
0109 
0110         The detector has a default view which is a longitudinal view of the
0111         box.
0112 
0113         The tracks are drawn at the end of event, and erased at the end of run.
0114 
0115  7- HOW TO START ?
0116 
0117         execute TestEm15 in 'batch' mode from macro files:
0118                 % TestEm15   compt.mac
0119 
0120         execute TestEm15 in 'interactive mode' with visualization:
0121                 % TestEm15
0122                 Idle> control/execute vis.mac
0123                 ....
0124                 Idle> type your commands
0125                 ....
0126                 Idle> exit
0127 
0128 8 - MACROS
0129        The examples of macros for Multiple Scattering:
0130        electron.mac muon.mac  proton.mac
0131 
0132        The example of Gamma Conversion macro:
0133        gamma.mac - gamma to e+ e-
0134 
0135 9 - HISTOGRAMS for gamma conversion
0136 
0137   10    # Open Angle (rad)* E gamma (MeV)
0138 The most probable value of the e+ e- pair opening angle multiplied by the
0139 photon energy is 1.6 rad*MeV and 338 rad*MeV in case mu+ mu- pair.
0140 See: Olsen, Phys. Rev. 131 (1963) 406.
0141 See also: Fig. 7 of arXiv:1802.08253 and Fig. 6 arXiv:1910.12501.
0142 
0143   11    # Log10 ( recoil momentum)
0144 The distribution of the  recoil momentum is described by
0145 Jost, Phys. Rev. 80 (1950) 189 (no form factor).
0146 See also Fig. 2 of Astroparticle Physics 88 (2017) 60.
0147 
0148   12    # Phi recoil
0149   13    # Phi positron
0150   For linearly polarized incident photons, the distributions should show
0151   a sinusoidal shape with period 180°, for non polarized incident photons,
0152   the distribution of azimuthal angles should be flat.
0153 
0154 
0155  14    # Asymmetry 2 * cos(phi_+ + phi_-)
0156 For a photon propagating along x, polarized along y,
0157 the average value of ( 2.0 * cos(phi_+ + phi_-) ),
0158 provides a measurement of the polarization asymmetry, A.
0159 Eq. (12) of Nucl. Instrum. Meth. A 729 (2013) 765
0160 The azimuthal angle of the event defined as the bisector angle
0161 of the azimuthal angles of the positron and of the electron,
0162 (phi_+ + phi_-)/2,
0163 provides the optimal measurement of the asymmetry
0164 Astroparticle Physics 88 (2017) 30.
0165 
0166 For high-energy photons (E >> 20 MeV), the asymptotic expression for A
0167 can be used for comparison.
0168 Boldyshev, Yad. Fiz. 14 (1971) 1027, Sov.J.Nucl.Phys. 14 (1972) 576.
0169 See also eq. (13) of arXiv:1802.08253
0170 Example : A ~ 0.17 at 100 GeV.
0171 
0172   15    # E plus / E gamma
0173 x_+ = E plus / E gamma has a more-or-less flat spectrum that extends
0174 almost from 0. to 1.
0175 See Fig. 16 page 261 of "The Quantum Theory of Radiation", W. Heitler,
0176 3rd edition, 1954.
0177 
0178  16  # Phi of Gamma Polarization
0179 The phi of polarization vector after transformation into reference system
0180  defined by gamma direction (z) , gamma polarization (x).
0181 
0182 10 - UI COMMANDS
0183 
0184 There are two commands to control G4BetheHeitler5DModel:
0185 
0186 /process/gconv/conversionType itype
0187 /process/gconv/onIsolated bool
0188 
0189 The command:
0190 /process/gconv/conversionType
0191 
0192 Allow to force conversion on nuclear or electron
0193 The parameter values
0194 0 - (default) both triplet and nuclear conversion in proportion triplet/nuclear 1/Z
0195 1 - force nuclear conversion
0196 2 - force triplet
0197 
0198 The command:
0199 /process/gconv/onIsolated
0200 
0201 Allow simulate conversion on isolated particles without screening
0202 The perimeter values:
0203 false - (default) atomic electron screening
0204 true - conversion on isolated particles