Back to home page

EIC code displayed by LXR

 
 

    


Warning, /geant4/examples/extended/analysis/B1Con/README is written in an unsupported language. File is not indexed.

0001 
0002 Example of Convergence Tester
0003 
0004           Koi, Tatsumi
0005           SLAC National Accelerator Laboratory / PPA
0006           tkoi@slac.stanford.eedu
0007 
0008 This example shows how to use convergece tester in Geant4.
0009 The aim of Convergence Tester
0010 After a Monte Carlo simulation, we get an answer. However how to estimate quality of the answer.
0011 The answer is usually given in a form of average value.
0012 But sometimes the value is strongly affected by single or a few events in the full calculation.
0013 In such case, we must concern about quality of the value.
0014 What we must remember is
0015         Large number of history does not valid result of simulation.
0016         Small Relative Error does not valid result of simulation
0017 Convergence tester provides statistical information
0018 to assist establishing valid confidence intervals for Monte Carlo results for users.
0019 
0020 Geometry and Physics are same to exampleB1. Please see README.B1
0021 Also run1.mac and run2.mac are like in exampleB1, with the only diffrence slightly
0022 increased number of events in run1.mac.
0023 Note that in this example, the classes with the code added for
0024 the purpose of demonstration of the Convergence Tester are defined in the namespace
0025 B1Con instead of B1 and also the executable and the test macro names are changed
0026 in exampleB1Con and exampleB1Con.in.
0027 
0028 Known problem:
0029 Computing time of T cannot be gotten properly in current MT migration of example of B1Con. Therefore
0030 FOM (=1/(R^2T) where R is relative error and T is computing time) relates numbers are unusable.
0031 
0032 ***********************************************************************************************************************
0033 Output example
0034 
0035 // Part I.A
0036 // Basic statistics values
0037 
0038 G4ConvergenceTester Output Result of DOSE_TALLY
0039        EFFICIENCY =         0.601
0040              MEAN =   4.81721e-12
0041               VAR =   2.15334e-23
0042                SD =   4.64041e-12
0043                 R =     0.0304622
0044             SHIFT =   2.22459e-13
0045               VOV =   0.000166754
0046               FOM =       1238.68
0047 
0048 // Part I.B
0049 // If the largeset scored events happen at next to the last event,
0050 // then how much the event effects the statistics values of the calculation
0051 
0052 THE LARGEST SCORE =   1.07301e-11 and it happend at 487th event
0053     Affected Mean =   4.82311e-12 and its ratio to orignal is 1.00123
0054      Affected VAR =   2.15468e-23 and its ratio to orignal is 1.00062
0055        Affected R =     0.0304192 and its ratio to orignal is 0.998587
0056    Affected SHIFT =    2.1804e-13 and its ratio to orignal is 0.980133
0057      Affected FOM =       1238.68 and its ratio to orignal is 1
0058 
0059 // Part I.C
0060 // Convergence tests results
0061 
0062 MEAN distribution is  RANDOM
0063 r follows 1/std::sqrt(N)
0064 r is monotonically decrease
0065 r is less than 0.1. r = 0.0304622
0066 VOV follows 1/std::sqrt(N)
0067 VOV is monotonically decrease
0068 FOM distribution is not RANDOM
0069 SLOPE is not large enough
0070 This result passes 6 / 8 Convergence Test.
0071 
0072 
0073 // Part II
0074 // Profile of statistics values in the history
0075 
0076 G4ConvergenceTester Output History of DOSE_TALLY
0077 i/16 till_ith      mean          var           sd            r          vov          fom        shift            e        r2eff        r2int
0078    1    62  4.94618e-12  2.04631e-23  4.52362e-12     0.115225   0.00313634      86.5745 -1.73435e-14     0.619048   0.00976801   0.00329797
0079    2   124  4.69364e-12  2.10698e-23  4.59018e-12    0.0874712     0.001597      150.228  3.11143e-13          0.6   0.00533333   0.00225666
0080    3   187  4.72161e-12  2.14009e-23  4.62612e-12    0.0714575   0.00101852      225.105   3.1009e-13     0.590426   0.00368986   0.00138916
0081    4   249  4.95617e-12  2.13982e-23  4.62582e-12    0.0590299  0.000690138      329.865  9.71971e-14         0.62   0.00245161   0.00101898
0082    5   312   4.8529e-12  2.13482e-23  4.62041e-12    0.0538155  0.000573301      396.887  1.95662e-13     0.607029   0.00206827  0.000818582
0083    6   374  5.14255e-12  2.15736e-23  4.64474e-12     0.046641  0.000432121      528.379 -6.42963e-14     0.637333   0.00151743  0.000652145
0084    7   437  5.03849e-12  2.13484e-23  4.62043e-12    0.0438173  0.000379317      598.673  2.54207e-14     0.636986   0.00130112  0.000614447
0085    8   499  4.96962e-12   2.1429e-23  4.62914e-12    0.0416574  0.000329007      662.364  9.27708e-14         0.63    0.0011746  0.000557264
0086    9   562  4.91513e-12  2.14709e-23  4.63367e-12    0.0397316  0.000285324       728.13  1.33544e-13     0.623446    0.0010728  0.000502991
0087   10   624  4.82995e-12  2.13825e-23  4.62412e-12    0.0382954  0.000272664      783.766  2.19101e-13        0.616  0.000997403  0.000466792
0088   11   687  4.79197e-12  2.13975e-23  4.62574e-12    0.0368022  0.000251788      848.661  2.48547e-13     0.606105  0.000944593  0.000407838
0089   12   749  4.77183e-12  2.15116e-23  4.63807e-12    0.0354912  0.000227501      912.513   2.6728e-13     0.601333  0.000883962  0.000373986
0090   13   812  4.76087e-12  2.14479e-23  4.63119e-12    0.0341162  0.000212259      987.548  2.70437e-13     0.597786  0.000827601  0.000334885
0091   14   874  4.81359e-12  2.13296e-23   4.6184e-12    0.0324353    0.0001976      1092.56  2.14521e-13     0.603429  0.000751082  0.000299767
0092   15   937  4.82018e-12  2.14558e-23  4.63204e-12    0.0313767  0.000181379      1167.52  2.18545e-13     0.601279  0.000706952  0.000276498
0093   16   999  4.81721e-12  2.15334e-23  4.64041e-12    0.0304622  0.000166754      1238.68  2.22459e-13        0.601  0.000663894  0.000263125
0094 
0095 **************************************************************************************************************************
0096 
0097 Reference of this Convergence tests
0098 MCNP(TM) -A General Monte Carlo N-Particle Transport Code
0099 Version 4B
0100 Judith F. Briesmeister, Editor
0101 LA-12625-M, Issued: March 1997, UC 705 and UC 700
0102 CHAPTER 2. GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
0103        VI. ESTIMATION OF THE MONTE CARLO PRECISION
0104