Warning, /geant4/examples/advanced/nanobeam/README is written in an unsupported language. File is not indexed.
0001 -------------------------------------------------------------------
0002 -------------------------------------------------------------------
0003
0004 =========================================================
0005 Geant4 - Nanobeam example
0006 =========================================================
0007
0008 README file
0009 ----------------------
0010
0011 CORRESPONDING AUTHOR
0012
0013 S. Incerti (a, *) et al.
0014 a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan
0015 (CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France
0016 * e-mail:incerti@cenbg.in2p3.fr
0017
0018 ---->1. INTRODUCTION.
0019
0020 The nanobeam example simulates the beam optics of the nanobeam line installed
0021 on the AIFIRA electrostatic accelerator facility located at CENBG,
0022 Bordeaux-Gradignan, France. For more information on this facility,
0023 please visit :
0024 http://www.cenbg.in2p3.fr/
0025
0026 The code can be used to calculate :
0027 1) intrinsic aberration coefficients of the nanobeam line
0028 2) beam image from a relasitic primary emittance distribution
0029 3) grid shadow images
0030
0031 Three quadrupole field models can be used :
0032 - a simple square field model
0033 - a 3D mesh field model computed from OPERA3D
0034 - an analytical model based on Enge's model
0035
0036 ---->2. GEOMETRY SET-UP.
0037
0038 The full magnetic configuration of the nanobeam line is simulated.
0039 This configuration is made of a combination of a doublet and triplet of
0040 5 Oxford Microbeams Ltd. OM50 quadrupoles.
0041
0042 More details on the experimental setup and its simulation with Geant4 can
0043 be found in the following papers:
0044
0045 - A DETAILED RAY-TRACING SIMULATION OF THE HIGH RESOLUTION MICROBEAM AT THE
0046 AIFIRA FACILITY
0047 By F. Andersson, Ph. Barberet, S. Incerti, Ph. Moretto
0048 Published in Nucl.Instrum.Meth.B266:1653-1658, 2008
0049
0050 - MONTE CARLO SIMULATION OF THE CENBG MICROBEAM AND NANOBEAM LINES WITH THE
0051 GEANT4 TOOLKIT
0052 By S. Incerti, Q. Zhang, F. Andersson, Ph. Moretto, G.W. Grime,
0053 M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pouthier and H. Seznec
0054 Published in Nucl.Instrum.Meth.B260:20-27, 2007
0055
0056 - GEANT4 SIMULATION OF THE NEW CENBG MICRO AND NANO PROBES FACILITY
0057 By S. Incerti, C. Habchi, Ph. Moretto, J. Olivier and H. Seznec
0058 Published in Nucl.Instrum.Meth.B249:738-742, 2006
0059
0060 - A COMPARISON OF RAY-TRACING SOFTWARE FOR THE DESIGN OF QUADRUPOLE MICROBEAM
0061 SYSTEMS
0062 By S. Incerti et al.,
0063 Published in Nucl.Instrum.Meth.B231:76-85, 2005
0064
0065 ---->3 VISUALIZATION
0066
0067 Visualization has not been implemented.
0068
0069 ---->4. HOW TO RUN THE EXAMPLE
0070
0071 1) You must have compiled your Geant4 installation with the FULL version of the
0072 CLHEP library which can handle matrix operations.
0073
0074 2) The code should be compiled cmake and run with :
0075
0076 ./nanobeam
0077
0078 The macro file default.mac is read by default.
0079
0080 Several macro files are provided:
0081
0082 1) for the computation of intrinsic aberration coefficients :
0083 coef-square.mac : using square magnetic field model
0084 coef-map.mac : using 3D map magnetic field model
0085 coef-enge.mac : using Enge's analytical field model
0086
0087 2) for the simulation of the beam image with a realistic emittance :
0088 image-square.mac : using square magnetic field model (=default.mac)
0089 image-map.mac : using 3D map magnetic field model
0090 image-enge.mac : using Enge's analytical field model
0091
0092 3) for the simulation of grid shadow images
0093 grid-square.mac : using square magnetic field model
0094 grid-map.mac : using 3D map magnetic field model
0095 grid-enge.mac : using Enge's analytical field model
0096
0097 These macros files are stored in the ./macros directory.
0098
0099 To run macros which include *map* in their name, copy the file OM50.grid
0100 into the directory in which you run ./nanobeam.
0101
0102 The code can be run in MT mode, for high statistics image simulation.
0103 Do not use MT for aberration coefficients calculation (32 rays only are shot).
0104 The switch to MT can be made in nanobeam.cc.
0105
0106 ---->5. PHYSICS
0107
0108 The example runs with protons with fluctuating energies around 3 MeV.
0109 Standard electromagnetic processes are activated by default (corresponding to the
0110 Physics builder G4EmStandardPhysics), including the G4StepLimiter process.
0111
0112 ---->6. SIMULATION OUTPUT AND RESULT ANALYZIS
0113
0114 All results are stored in the nanobeam.root file and can be displayed with the provided
0115 ROOT macro file plot.C:
0116 * be sure to have ROOT installed on your machine
0117 * be sure to be in the directory where ROOT output files are generated
0118 * copy plot.C into this directory
0119 * launch ROOT by typing root, then under your ROOT session, type in : .X plot.C
0120 to execute the macro file
0121 * or type directly: root plot.X
0122
0123 This macro file shows :
0124 - the beam profile along the nanobeam line (only for the computation of intrinsic
0125 coefficients)
0126 - the beam image (Y vs X) on target
0127 - the beam emittance (THETA vs X) and (PHY vs Y) on target
0128 - the grid shadow image (option)
0129
0130 The output ntuples can be written as xml or csv files, by changing the G4AnalysisManager default file type in RunAction::BeginOfRunAction().
0131
0132 ---------------------------------------------------------------------------
0133
0134 Should you have any enquiry, please do not hesitate to contact:
0135 incerti@cenbg.in2p3.fr