|
||||
Last indexation completed on 2025-01-18 10:18:49 UTC
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| medical_linac |
+ +
| README |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This application has been developed by the Geant4 users:
*Silvia Pozzi and *Barbara Caccia with the support of ^Carlo Mancini Terracciano
Past contributros:
$Claudio Andenna, Pablo Cirrone, Alessandro Occhigrossi*. S. Guatelli+
Michela Piergentili with the support of M.G.Pia and Franca Foppiano.
*Istituto Superiore di Sanita' and INFN Roma, Italy
^Physics Dep. - Univ. La Sapienza and INFN Roma, Italy
%LNS-INFN Catania, Italy
+University of Wollongong, Autralia
$INAIL DIPIA - ex ISPESL and INFN Roma, gruppo collegato Sanita', Italy
---> A brief description
The example is a deep update of the previous version for medlinac. The example
is based on a medical accelerator used in a intercomparison exercise managed
by working Group6 (Computational Dosimetry) of Eurados network (B.Caccia et
al. "A model validation scheme for Monte Carlo simulations of a medical linear accelerator: geometrical description and dosimetric data used in the “Linac
Action”- free download from https://eurados.sckcen.be/sites/eurados/files/uploads/Report-Publications/Reports/2020/EURADOS%20Report%202020-05.pdf).
The medical accelerator is a GE Saturn 43 LINAC. The given description of the
Saturn 43 LINAC corresponds to an operational mode with an acceleration voltage
of 12 MV in the photon mode with collimator settings for a 10x10 cm^2 field size
at standard working distance. Experimental dosimetric data are disposable and
are related to a cubic water phantom of a 40x40x40 cm3 polymethyl methacrylate
(PMMA) water tank filled with distilled water. At the front of the phantom, the
thickness of PMMA crossed by the beam is 4 mm (15 mm for the all other walls of
the phantom). The distance from the source point of the target to the external
entrance window of the water phantom is 90 cm.
The example package contains:
- source files (src, include, macros)
- CMakeLists.txt
- README.txt
- main.cc
----> 1. Experimental set-up.
The elements simulated are:
1 - A source of electrons. The beam direction is along the z axis.
2 - A target
3 - A primary collimator
4 - A vacuum window
5 - A flattening filter
6 - A ion chamber
7 - Secondary movable collimators (jaws)
8 - A cubic phantom filled with water
----> 2. How to run the example.
The example runs with the run.mac macro file.
----> 4. The physics
The PhysicsList class allows the activation of all the physic models
via the macro file.
The standard electromagnetic option3 model is the default model.
----> 5. Simulation output
The output of the medlinac example is generated by the Geant4 command-based
scorer doseDeposit.
----> 6. Main differences with the previous ML2 release.
Multithreading has been implemented and a real accelerator was used,
with experimental data for dose profiles and deep percentage dose
with which to check the results obtained in the simulation.
----> 7. Contacts
If you have any questions or wish to notify of updates and/or modification
please contact:
Silvia Pozzi at silvia.pozzi@iss.it
Barbara Caccia at barbara.caccia@iss.it
Istituto Superiore di Sanita' and INFN Roma, Italy
Viale Regina Elena 299, 00161 Roma (Italy)
...
SEE ALSO: README
Name | Size | Date (UTC) | Last indexed | Description | |
---|---|---|---|---|---|
Name | Size | Date (UTC) | Last indexed | Description | |
Parent directory | - | 2025-01-18 08:00:55 |
Geant4 - an Object-Oriented Toolkit for Simulation in HEP
|
||
include/ | - | 2025-01-18 08:00:55 | |||
src/ | - | 2025-01-18 08:00:55 | |||
CMakeLists.txt | 2348 bytes | 2025-01-18 08:00:55 | - | ||
History | 11653 bytes | 2025-01-18 08:00:55 | - | ||
medical_linac.cc | 3290 bytes | 2025-01-18 08:00:55 | 2025-01-18 09:16:58 | ||
medical_linac.out | 4236 bytes | 2025-01-18 08:00:55 | - | ||
README | 3962 bytes | 2025-01-18 08:00:55 | - | ||
run.mac | 516 bytes | 2025-01-18 08:00:55 | - | ||
vis.mac | 3194 bytes | 2025-01-18 08:00:55 | - |
[ Source navigation ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |