|
||||
File indexing completed on 2025-01-31 09:22:04
0001 // 0002 // ******************************************************************** 0003 // * License and Disclaimer * 0004 // * * 0005 // * The Geant4 software is copyright of the Copyright Holders of * 0006 // * the Geant4 Collaboration. It is provided under the terms and * 0007 // * conditions of the Geant4 Software License, included in the file * 0008 // * LICENSE and available at http://cern.ch/geant4/license . These * 0009 // * include a list of copyright holders. * 0010 // * * 0011 // * Neither the authors of this software system, nor their employing * 0012 // * institutes,nor the agencies providing financial support for this * 0013 // * work make any representation or warranty, express or implied, * 0014 // * regarding this software system or assume any liability for its * 0015 // * use. Please see the license in the file LICENSE and URL above * 0016 // * for the full disclaimer and the limitation of liability. * 0017 // * * 0018 // * This code implementation is the result of the scientific and * 0019 // * technical work of the GEANT4 collaboration. * 0020 // * By using, copying, modifying or distributing the software (or * 0021 // * any work based on the software) you agree to acknowledge its * 0022 // * use in resulting scientific publications, and indicate your * 0023 // * acceptance of all terms of the Geant4 Software license. * 0024 // ******************************************************************** 0025 // 0026 // 0027 // Author: Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 0028 // 0029 // History: 0030 // ----------- 0031 // 2 June 2002 First committed to cvs 0032 // 0033 // ------------------------------------------------------------------- 0034 0035 // Class description: 0036 // Low Energy Electromagnetic Physics 0037 // This Class loads and stores all the information of auger effect (shellIds, 0038 // probabilities and energies of the electrons emitted) 0039 // Further documentation available from http://www.ge.infn.it/geant4/lowE 0040 0041 // ------------------------------------------------------------------- 0042 0043 #ifndef G4RDAUGERDATA_HH 0044 #define G4RDAUGERDATA_HH 1 0045 0046 #include "globals.hh" 0047 #include <vector> 0048 #include <map> 0049 #include "G4RDAugerTransition.hh" 0050 0051 class G4DataVector; 0052 0053 class G4RDAugerData 0054 { 0055 public: 0056 0057 G4RDAugerData(); 0058 0059 ~G4RDAugerData(); 0060 0061 // The method returns the number of shells in wich a 0062 // vacancy can be filled by a NON-radiative transition, given the atomic number 0063 size_t NumberOfVacancies(G4int Z) const; 0064 0065 // Given the index of the vacancy (and the atomic number Z) returns its identity 0066 G4int VacancyId(G4int Z, G4int vacancyIndex) const; 0067 0068 // Given the index of a vacancy in the atom with the atomc number Z, returns the number of 0069 //shells starting from wich an electron can fill the vacancy 0070 size_t NumberOfTransitions(G4int Z, G4int vacancyIndex) const; 0071 0072 // Given the atomic number Z, the Index of the initial vacancy shell 0073 // and the index of the starting shell for the 0074 // transition, returns the identity of the shell originating the electron transition 0075 G4int StartShellId(G4int Z, G4int initialVacancyIndex, G4int transitionShellIndex) const; 0076 0077 // Given the atomic number , the indexes of the starting, the auger originating shell, 0078 // and the transition shell Id, returns the transition energy 0079 G4double StartShellEnergy(G4int Z, G4int vacancyIndex, G4int transitionId, G4int augerIndex) const; 0080 0081 // Given the atomic number, the index of the starting shell, the auger originating shells, 0082 // and the transition shell Id, returns the transition probability 0083 G4double StartShellProb(G4int Z, G4int vacancyIndex,G4int transitionId,G4int augerIndex) const; 0084 0085 // Given the atomic number, the index of the starting vacancy shell and the transition shell Id, 0086 // returns the number of shells wich an auger electron can come from. 0087 size_t NumberOfAuger(G4int Z, G4int initIndex, G4int vacancyId) const; 0088 0089 // Given the atomic number, th index of the starting and the auger originating shell, 0090 // and the transition shell Id, returns the ager originating shell Id 0091 size_t AugerShellId(G4int Z, G4int vacancyIndex, G4int transId, G4int augerIndex) const; 0092 0093 std::vector<G4RDAugerTransition> LoadData(G4int Z); 0094 0095 void BuildAugerTransitionTable(); 0096 0097 void PrintData(G4int Z); 0098 0099 0100 0101 // Given the atomic number and the vacancy intial shell index returns 0102 // the AugerTransition object related to that shell 0103 0104 G4RDAugerTransition* GetAugerTransition(G4int Z, G4int vacancyShellIndex); 0105 0106 // Given the atomic number returns a vector of possible AugerTransition objects 0107 std::vector<G4RDAugerTransition>* GetAugerTransitions(G4int Z); 0108 0109 private: 0110 0111 // std::map<G4int,G4DataVector*,std::less<G4int> > idMap; 0112 0113 typedef std::map<G4int,std::vector<G4RDAugerTransition>,std::less<G4int> > trans_Table; 0114 trans_Table augerTransitionTable; 0115 0116 /* 0117 std::map<G4int,std::map<G4Int,G4DataVector*,std::less<G4int> >,std::less<G4int> > transProbabilityMap; 0118 std::map<G4int,std::map<G4Int,G4DataVector*,std::less<G4int> >,std::less<G4int> > transAugerIdMap; 0119 */ 0120 0121 std::vector<G4int> nInitShells; 0122 std::vector<G4int> numberOfVacancies; 0123 0124 }; 0125 0126 #endif 0127 0128 0129 0130 0131
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |