Warning, /geant4/examples/advanced/eRosita/README.txt is written in an unsupported language. File is not indexed.
0001 -------------------------------------------------------------------
0002
0003 =========================================================
0004 Geant4 - an Object-Oriented Toolkit for Simulation in HEP
0005 =========================================================
0006
0007 eROSITA fluorescence
0008 --------------------
0009
0010 Authors:
0011
0012 Dieter Schlosser (pnSensor, Munich),
0013 Georg Weidenspointner (MPE Garching and MPI Halbleiterlabor, Munich),
0014 Maria Grazia Pia (INFN Genova)
0015 Francesco Longo (INFN Trieste)
0016 Andrea Polsini (Università degli Studi di Trieste)
0017
0018 Main references:
0019
0020 M. G. Pia et al., 2009, "PIXE Simulation With Geant4",
0021 IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3614-3649
0022
0023 N. Meidinger et al., 2010, "Development of the focal plane PNCCD
0024 camera system for the X-ray space telescope eROSITA", Nuclear
0025 Instruments and Methods in Physics Research A 624, 321-329
0026
0027 Web site:
0028
0029 http://www.ge.infn.it/geant4/physics/pixe/erosita.html
0030
0031 Contact person:
0032 Francesco Longo, francesco.longo@ts.infn.it
0033
0034 ---- OVERVIEW ----
0035
0036 This example demonstrates:
0037 - the generation of XRF and PIXE,
0038 - how to use different physics processes from those encompassed in the
0039 Geant4 toolkit in a simulation application.
0040
0041 The examples/advanced/eRosita/application directory contains files pertinent
0042 to the experimental simulation model.
0043
0044 The physics capabilities and validation of the physics processes used in this example
0045 are documented in the PHYSICS REFERENCES section below.
0046
0047 ---- EXAMPLE DESCRIPTION ----
0048
0049 This is example is based on simulations of the instrumental background
0050 of the eROSITA X-ray telescope, in particular the strength of
0051 fluorescence lines inside the passive graded Z shield. The set-up
0052 considered in this example consists of a Cu block that is irradiated
0053 with protons. Impact ionization of Cu atoms generates vacancies in
0054 atomic shells. These are then filled by atomic de-excitation,
0055 resulting in the emission of fluorescence photons and Auger electrons
0056 - the PIXE (particle induced X-ray emission) process. In particular
0057 fluorescence photons are then detected with a Si CCD positioned next to
0058 the Cu block.
0059
0060 The simulated set-up is defined in eRositaDetectorConstruction.
0061 The Cu block is located at position x = y = z = 0 cm. Its dimensions
0062 in x, y, and z are 0.5 cm * 0.5 cm * 3 cm. The CCD, represented by a
0063 slab of Si, is positioned at x = z = 0 cm and y = 2 cm. The CCD dimensions
0064 in x, y, z and are 4 cm * 450 mu_m * 4 cm.
0065
0066 The vertex and initial momenta of the protons are defined in
0067 eRositaPrimaryGeneratorAction. The vertex is at x = 0 cm, y = 2.25
0068 cm, and z = 4 cm. The initial direction of the protons is given by the
0069 vector (0.0, -0.5, -1.0). The initial kinetic energy of the protons is
0070 150 MeV.
0071
0072 The physics processes relevant to this simulation are defined in
0073 eRositaPhysicsList. The key process for generation of PIXE is
0074 G4hImpactIonisation. In the example, proton cross sections based on
0075 the ECPSSR model are used. Cross sections are computed for an energy
0076 range from 1 keV to 200 MeV. The energy thresholds for the production
0077 of fluorescence photons and Auger electrons by PIXE are set to a value
0078 of 250 eV.
0079
0080 The output of the example is an ASCII file named
0081 TrackerPhotonEnergy.out. It contains the energy, in MeV, of every
0082 photon that finds its way to the tracker (or which is created as a
0083 secondary inside the tracker). If the batch mode example is run, the
0084 entries 0.00798467, 0.00800571, and 0.00886534 correspond to Cu
0085 fluorescence lines K_alpha2, K_alpha1, and K_beta1,
0086 respectively. Other photons originate e.g. from bremsstrahlung of
0087 delta rays in Cu. A histogram of the energies in
0088 TrackerPhotonEnergy.out, in particular if generated for more protons,
0089 clearly shows the PIXE photons from Cu on top of a continuous
0090 distribution.
0091
0092
0093 Instructions on how to build and run the example:
0094
0095 - To compile the example:
0096 % cd eRosita
0097 % make
0098 If the environment variable G4WORKDIR and has been defined, an executable
0099 named eRosita will be generated in $G4WORKDIR/bin/$G4SYSTEM
0100
0101 - To run the example:
0102
0103 Do not forget to define the G4PIIDATA environment variable as appropriate
0104 to get access to the PIXE data library (e.g. G4PII1.1)
0105
0106 + To run without visualisation (batch mode):
0107
0108 Go to $G4WORKDIR/bin/$G4SYSTEM
0109 Copy the file eRosita/eRosita.in to this directory.
0110 The input file eRosita.in defines a simulation with 1000 protons
0111 of energy 100 MeV.
0112 Start the simulation with: eRosita eRosita.in > eRosita.out
0113
0114 The resulting files eRosita.out and the ASCII output file
0115 TrackerPhotonEnergy.out are included in the example. Format
0116 and content of the output file are described below.
0117
0118 + To run with visualisation:
0119
0120 Go to $G4WORKDIR/bin/$G4SYSTEM
0121 Copy eRosita/vis.mac to this directory.
0122 The macro file vis.mac calls the DAWN visualization driver to
0123 display the simulation of 100 protons with energy 100 MeV.
0124
0125 An ASCII output file TrackerPhotonEnergy.out is created. However,
0126 this file may be empty in case the first 100 protons do not
0127 produce any fluorescence photons that reach the tracker.
0128
0129
0130 ---- PHYSICS REFERENCES ----
0131
0132 M. G. Pia et al.,
0133 PIXE Simulation With Geant4,
0134 IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3614-3649, 2009.
0135
0136 A. Lechner, M. G. Pia, M. Sudhakar,
0137 Validation of Geant4 low energy electromagnetic processes against precision measurements of electron energy deposit,
0138 IEEE Trans. Nucl. Sci., vol. 56, no. 2, pp. 398-416, 2009.
0139
0140 K. Amako et al.,
0141 Comparison of Geant4 electromagnetic physics models against the NIST reference data,
0142 IEEE Trans. Nucl. Sci., vol. 52, no. 4, pp. 910-918, 2005.
0143
0144 S. Guatelli, A. Mantero, B. Mascialino, P. Nieminen, M. G. Pia,
0145 Geant4 Atomic Relaxation,
0146 IEEE Trans. Nucl. Sci., vol. 54, no. 3, pp. 585-593, 2007.
0147
0148 M. G. Pia, P. Saracco, M. Sudhakar,
0149 Validation of radiative transition probability calculations,
0150 IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3650-3661, 2009.
0151
0152 S. Guatelli, A. Mantero, B. Mascialino, P. Nieminen, M. G. Pia, V. Zampichelli,
0153 Validation of Geant4 Atomic Relaxation against the NIST Physical Reference Data,
0154 IEEE Trans. Nucl. Sci., vol. 54, no. 3, pp. 594-603, 2007.
0155
0156 L. Peralta et al.,
0157 A new low-energy bremsstrahlung generator for GEANT4,
0158 Radiat. Prot. Dosim., vol. 116, no. 1-4, pp. 59-64, 2005.
0159
0160 F. Longo et al.,
0161 New Geant4 Developments for Doppler Broadening Simulation in Compton Scattering - Development of Charge Transfer Simulation Models in Geant4,
0162 Proc. IEEE Nuclear Science Symposium, Dresden, 2008.
0163
0164 S. Chauvie et al.,
0165 Validation of the Bremsstrahlung Models of Geant4,
0166 Proc. IEEE Nuclear Science Symposium, 2006.
0167
0168 S. Chauvie et al.,
0169 Geant4 Low Energy Electromagnetic Physics,
0170 The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, American Nucl. Soc., LaGrange Park, IL, 2005.
0171
0172 S. Chauvie et al.,
0173 Geant4 low energy electromagnetic physics,
0174 Proc.Nuclear Science Symposium, 2004.
0175
0176 S. Chauvie et al.,
0177 Geant4 Low Energy Electromagnetic Physics,
0178 Proc. CHEP 2001.
0179
0180 J. Apostolakis, S. Giani, M. Maire, P. Nieminen, M. G. Pia, L. Urban,
0181 Geant4 low energy electromagnetic models for electrons and photons
0182 CERN-OPEN-99-034 and INFN/AE-99/18, 1999.
0183
0184 Further references are listed in http://www.ge.infn.it/geant4/papers/,
0185 that also documents recent developments intended for future improvements
0186 to Geant4, and their validation.