File indexing completed on 2025-02-22 09:38:47
0001 import numpy as np, pandas as pd, matplotlib.pyplot as plt, matplotlib as mpl, awkward as ak, sys, uproot as ur
0002 import mplhep as hep
0003 hep.style.use("CMS")
0004
0005 plt.rcParams['figure.facecolor']='white'
0006 plt.rcParams['savefig.facecolor']='white'
0007 plt.rcParams['savefig.bbox']='tight'
0008
0009 plt.rcParams["figure.figsize"] = (7, 7)
0010
0011 config=sys.argv[1].split("/")[1]
0012 outdir=sys.argv[1]+"/"
0013 try:
0014 import os
0015 os.mkdir(outdir[:-1])
0016 except:
0017 pass
0018
0019 import uproot as ur
0020 arrays_sim={p:ur.open(f'sim_output/femc_photon/{config}_rec_photon_{p}GeV.edm4eic.root:events').arrays() for p in (10, 20, 30, 40, 50, 60,70,80)}
0021
0022 for p in arrays_sim:
0023 array=arrays_sim[p]
0024 tilt=-.025
0025 px=array['MCParticles.momentum.x'][:,2]
0026 py=array['MCParticles.momentum.y'][:,2]
0027 pz=array['MCParticles.momentum.z'][:,2]
0028 p=np.sqrt(px**2+py**2+pz**2)
0029
0030 pxp=px*np.cos(tilt)-pz*np.sin(tilt)
0031 pyp=py
0032 pzp=pz*np.cos(tilt)+px*np.sin(tilt)
0033
0034 array['eta_truth']=1/2*np.log((p+pzp)/(p-pzp))
0035 array['nclust_endcap']=[len(array['EcalEndcapPClusters.energy'][i]) for i in range(len(array))]
0036
0037 for array in arrays_sim.values():
0038 tilt=-0.025
0039 px=array['MCParticles.momentum.x'][:,2]
0040 py=array['MCParticles.momentum.y'][:,2]
0041 pz=array['MCParticles.momentum.z'][:,2]
0042 p=np.sqrt(px**2+py**2+pz**2)
0043
0044 pxp=px*np.cos(tilt)-pz*np.sin(tilt)
0045 pyp=py
0046 pzp=pz*np.cos(tilt)+px*np.sin(tilt)
0047
0048 array['eta_truth']=1/2*np.log((p+pzp)/(p-pzp))
0049 array['phi_truth']=np.arctan2(pyp,pxp)
0050
0051
0052 plt.figure()
0053 for eta_min, eta_max, field in (1.5, 2.8, 'nclust_endcap'),:
0054 for p in arrays_sim:
0055 array=arrays_sim[p]
0056 plt.hist(array[field][(array['eta_truth']>eta_min)&(array['eta_truth']<eta_max)],
0057 bins=np.linspace(0,10,11), histtype='step', label=f'{p} GeV', density=True)
0058 plt.ylabel("events")
0059 plt.xlabel("# of Ecal clusters")
0060 plt.legend()
0061 plt.savefig(outdir+f"/{field}.pdf")
0062
0063
0064 fig, axs=plt.subplots(1,2, figsize=(16,8))
0065 avgs=[]
0066 stds=[]
0067 pvals=[]
0068
0069 for p in arrays_sim:
0070
0071 a=arrays_sim[p]
0072 n=[]
0073 nn=-a['EcalEndcapPClusters.hits_begin']+a['EcalEndcapPClusters.hits_end']
0074 E=a['EcalEndcapPClusters.energy']
0075 for evt in range(len(array)):
0076 if len(E[evt])==0:
0077 continue
0078 maxE=np.max(E[evt])
0079 found=False
0080 for i in range(len(E[evt])):
0081 if E[evt][i]==maxE:
0082 n.append(nn[evt][i])
0083 found=True
0084 break
0085
0086
0087
0088 if p ==50:
0089 plt.sca(axs[0])
0090 y,x,_=plt.hist(n, range=(0,100), bins=100, histtype='step', label=f"E={p} GeV")
0091 plt.ylabel("events")
0092 plt.xlabel("# hits in cluster")
0093 plt.title(f"photon, E={p} GeV")
0094 pvals.append(p)
0095 avgs.append(np.mean(n))
0096 stds.append(np.std(n))
0097
0098 plt.sca(axs[1])
0099 plt.errorbar(pvals, avgs, stds, marker='o',ls='')
0100 plt.xlabel("E [GeV]")
0101 plt.ylabel("# hits in cluster [mean$\\pm$std]")
0102 plt.ylim(0)
0103 plt.savefig(outdir+"/nhits_per_cluster.pdf")
0104
0105
0106
0107 def gauss(x, A,mu, sigma):
0108 return A * np.exp(-(x-mu)**2/(2*sigma**2))
0109 from scipy.optimize import curve_fit
0110
0111 fig, axs=plt.subplots(1,3, figsize=(24,8))
0112 pvals=[]
0113 res=[]
0114 dres=[]
0115 scale=[]
0116 dscale=[]
0117 for p in arrays_sim:
0118 bins=np.linspace(15*p/20,22*p/20, 50)
0119 if p==50:
0120 plt.sca(axs[0])
0121 plt.title(f"E={p} GeV")
0122 y,x,_=plt.hist(ak.flatten(arrays_sim[p]['EcalEndcapPClusters.energy']), bins=bins, histtype='step')
0123 plt.ylabel("events")
0124 plt.xlabel("$E^{rec}_\\gamma$ [GeV]")
0125 else:
0126 y,x=np.histogram(ak.flatten(arrays_sim[p]['EcalEndcapPClusters.energy']), bins=bins)
0127 bcs=(x[1:]+x[:-1])/2
0128
0129 fnc=gauss
0130 slc=abs(bcs-p)<3
0131 sigma=np.sqrt(y[slc])+0.5*(y[slc]==0)
0132 p0=(100, p, 3)
0133
0134 coeff, var_matrix = curve_fit(fnc, list(bcs[slc]), list(y[slc]), p0=p0, sigma=list(sigma), maxfev=10000)
0135
0136 if p==50:
0137 xx=np.linspace(15*p/20,22*p/20, 100)
0138
0139 plt.plot(xx, fnc(xx,*coeff), label=f"$\\sigma_E/E={abs(coeff[2])/coeff[1]*100:.1f}\%$")
0140 plt.axvline(p, color='g', ls='--', alpha=0.7)
0141 plt.legend()
0142
0143
0144 pvals.append(p)
0145 res.append(abs(coeff[2])/coeff[1])
0146 dres.append(np.sqrt(var_matrix[2][2])/coeff[1])
0147 scale.append(abs(coeff[1])/p)
0148 dscale.append(np.sqrt(var_matrix[1][1])/p)
0149 plt.sca(axs[1])
0150 plt.errorbar(pvals, 100*np.array(res), 100*np.array(dres), ls='', marker='o')
0151 fnc = lambda E, a, b: np.hypot(a,b/np.sqrt(E))
0152 p0=(.05, .12)
0153 coeff, var_matrix = curve_fit(fnc, pvals, res, p0=p0, sigma=dres, maxfev=10000)
0154 xx=np.linspace(7, 85, 100)
0155 plt.plot(xx, 100*fnc(xx,*coeff), label=f'fit:{100*coeff[0]:.1f}%$\\oplus\\frac{{{100*coeff[1]:.0f}\\%}}{{\\sqrt{{E}}}}$')
0156 plt.legend()
0157 plt.ylim(0)
0158 plt.ylabel("E resolution [%]")
0159 plt.xlabel("E truth [GeV]")
0160 plt.sca(axs[2])
0161
0162 plt.errorbar(pvals, 100*np.array(scale), 100*np.array(dscale), ls='', marker='o')
0163 plt.ylabel("energy scale [%]")
0164 plt.xlabel("E truth [GeV]")
0165 plt.axhline(100, color='0.5', alpha=0.5, ls='--')
0166 plt.ylim(0, 110)
0167 plt.tight_layout()
0168 plt.savefig(outdir+"/energy_res.pdf")
0169
0170
0171 fig, axs=plt.subplots(1,2, figsize=(16,8))
0172
0173 partitions=[1.5, 2.0, 2.5, 3.0]
0174 for eta_min, eta_max in zip(partitions[:-1], partitions[1:]):
0175 pvals=[]
0176 res=[]
0177 dres=[]
0178 scale=[]
0179 dscale=[]
0180 for p in arrays_sim:
0181 bins=np.linspace(15*p/20,22*p/20, 50)
0182 eta_truth=arrays_sim[p]['eta_truth']
0183 y,x=np.histogram(ak.flatten(arrays_sim[p][(eta_truth<eta_max)&(eta_truth>eta_min)]['EcalEndcapPClusters.energy']), bins=bins)
0184 bcs=(x[1:]+x[:-1])/2
0185
0186 fnc=gauss
0187 slc=abs(bcs-p)<3
0188 sigma=np.sqrt(y[slc])+0.5*(y[slc]==0)
0189 p0=(100, p, 3)
0190 try:
0191 coeff, var_matrix = curve_fit(fnc, list(bcs[slc]), list(y[slc]), p0=p0, sigma=list(sigma), maxfev=10000)
0192 if abs(coeff[1])>100 or np.sqrt(var_matrix[1][1])>100:
0193 continue
0194 pvals.append(p)
0195 res.append(abs(coeff[2])/coeff[1])
0196 dres.append(np.sqrt(var_matrix[2][2])/coeff[1])
0197 scale.append(abs(coeff[1])/p)
0198 dscale.append(np.sqrt(var_matrix[1][1])/p)
0199 except:
0200 pass
0201 plt.sca(axs[0])
0202 plt.errorbar(pvals, 100*np.array(res), 100*np.array(dres), ls='', marker='o', label=f'${eta_min:.1f}<\\eta<{eta_max:.1f}$')
0203
0204 plt.sca(axs[1])
0205 plt.errorbar(pvals, 100*np.array(scale), 100*np.array(dscale), ls='', marker='o', label=f'${eta_min:.1f}<\\eta<{eta_max:.1f}$')
0206
0207 plt.sca(axs[0])
0208 plt.legend()
0209 plt.ylim(0)
0210 plt.ylabel("E resolution [%]")
0211 plt.xlabel("E truth [GeV]")
0212
0213 plt.sca(axs[1])
0214 plt.ylabel("energy scale [%]")
0215 plt.xlabel("E truth [GeV]")
0216 plt.axhline(100, color='0.5', alpha=0.5, ls='--')
0217 plt.ylim(0, 110)
0218
0219 plt.tight_layout()
0220 plt.savefig(outdir+"/energy_res_eta_partitions.pdf")