File indexing completed on 2025-07-05 08:12:22
0001
0002
0003
0004
0005
0006
0007
0008
0009 #include "Acts/Plugins/ExaTrkX/TorchMetricLearning.hpp"
0010
0011 #include "Acts/Plugins/ExaTrkX/detail/TensorVectorConversion.hpp"
0012 #include "Acts/Plugins/ExaTrkX/detail/buildEdges.hpp"
0013
0014 #ifndef ACTS_EXATRKX_CPUONLY
0015 #include <c10/cuda/CUDAGuard.h>
0016 #endif
0017
0018 #include <numbers>
0019
0020 #include <torch/script.h>
0021 #include <torch/torch.h>
0022
0023 #include "printCudaMemInfo.hpp"
0024
0025 using namespace torch::indexing;
0026
0027 namespace Acts {
0028
0029 TorchMetricLearning::TorchMetricLearning(const Config &cfg,
0030 std::unique_ptr<const Logger> _logger)
0031 : m_logger(std::move(_logger)), m_cfg(cfg) {
0032 c10::InferenceMode guard(true);
0033 torch::Device device = torch::kCPU;
0034
0035 if (!torch::cuda::is_available()) {
0036 ACTS_DEBUG("Running on CPU...");
0037 } else {
0038 if (cfg.deviceID >= 0 &&
0039 static_cast<std::size_t>(cfg.deviceID) < torch::cuda::device_count()) {
0040 ACTS_DEBUG("GPU device " << cfg.deviceID << " is being used.");
0041 device = torch::Device(torch::kCUDA, cfg.deviceID);
0042 } else {
0043 ACTS_WARNING("GPU device " << cfg.deviceID
0044 << " not available, falling back to CPU.");
0045 }
0046 }
0047
0048 ACTS_DEBUG("Using torch version " << TORCH_VERSION_MAJOR << "."
0049 << TORCH_VERSION_MINOR << "."
0050 << TORCH_VERSION_PATCH);
0051 #ifndef ACTS_EXATRKX_CPUONLY
0052 if (!torch::cuda::is_available()) {
0053 ACTS_INFO("CUDA not available, falling back to CPU");
0054 }
0055 #endif
0056
0057 try {
0058 m_model = std::make_unique<torch::jit::Module>();
0059 *m_model = torch::jit::load(m_cfg.modelPath, device);
0060 m_model->eval();
0061 } catch (const c10::Error &e) {
0062 throw std::invalid_argument("Failed to load models: " + e.msg());
0063 }
0064 }
0065
0066 TorchMetricLearning::~TorchMetricLearning() {}
0067
0068 PipelineTensors TorchMetricLearning::operator()(
0069 std::vector<float> &inputValues, std::size_t numNodes,
0070 const std::vector<std::uint64_t> & ,
0071 const ExecutionContext &execContext) {
0072 const auto device =
0073 execContext.device.type == Acts::Device::Type::eCUDA
0074 ? torch::Device(torch::kCUDA, execContext.device.index)
0075 : torch::kCPU;
0076 ACTS_DEBUG("Start graph construction");
0077 c10::InferenceMode guard(true);
0078
0079
0080 #ifdef ACTS_EXATRKX_CPUONLY
0081 assert(device == torch::Device(torch::kCPU));
0082 #else
0083 std::optional<c10::cuda::CUDAGuard> device_guard;
0084 if (device.is_cuda()) {
0085 device_guard.emplace(device.index());
0086 }
0087 #endif
0088
0089 const std::int64_t numAllFeatures = inputValues.size() / numNodes;
0090
0091
0092 ACTS_VERBOSE("First spacepoint information: " << [&]() {
0093 std::stringstream ss;
0094 for (int i = 0; i < numAllFeatures; ++i) {
0095 ss << inputValues[i] << " ";
0096 }
0097 return ss.str();
0098 }());
0099 printCudaMemInfo(logger());
0100
0101 auto inputTensor = detail::vectorToTensor2D(inputValues, numAllFeatures);
0102
0103
0104
0105 if (inputTensor.options().device() == device) {
0106 inputTensor = inputTensor.clone();
0107 } else {
0108 inputTensor = inputTensor.to(device);
0109 }
0110
0111
0112
0113
0114
0115
0116 auto model = m_model->clone();
0117 model.to(device);
0118
0119 std::vector<torch::jit::IValue> inputTensors;
0120 auto selectedFeaturesTensor =
0121 at::tensor(at::ArrayRef<int>(m_cfg.selectedFeatures));
0122 inputTensors.push_back(
0123 !m_cfg.selectedFeatures.empty()
0124 ? inputTensor.index({Slice{}, selectedFeaturesTensor})
0125 : std::move(inputTensor));
0126
0127 ACTS_DEBUG("embedding input tensor shape "
0128 << inputTensors[0].toTensor().size(0) << ", "
0129 << inputTensors[0].toTensor().size(1));
0130
0131 auto output = model.forward(inputTensors).toTensor();
0132
0133 ACTS_VERBOSE("Embedding space of the first SP:\n"
0134 << output.slice(0, 0, 1));
0135 printCudaMemInfo(logger());
0136
0137
0138
0139
0140
0141 auto edgeList = detail::buildEdges(output, m_cfg.rVal, m_cfg.knnVal,
0142 m_cfg.shuffleDirections);
0143
0144 ACTS_VERBOSE("Shape of built edges: (" << edgeList.size(0) << ", "
0145 << edgeList.size(1));
0146 ACTS_VERBOSE("Slice of edgelist:\n" << edgeList.slice(1, 0, 5));
0147 printCudaMemInfo(logger());
0148
0149
0150 return {detail::torchToActsTensor<float>(inputTensor, execContext),
0151 detail::torchToActsTensor<std::int64_t>(edgeList, execContext),
0152 std::nullopt, std::nullopt};
0153 }
0154 }