File indexing completed on 2025-10-23 08:23:18
0001
0002
0003
0004
0005
0006
0007
0008
0009 #include "ActsExamples/EventData/NeuralCalibrator.hpp"
0010
0011 #include "Acts/Definitions/TrackParametrization.hpp"
0012 #include "Acts/EventData/MeasurementHelpers.hpp"
0013 #include "Acts/EventData/SourceLink.hpp"
0014 #include "Acts/Utilities/CalibrationContext.hpp"
0015 #include "Acts/Utilities/Helpers.hpp"
0016 #include "Acts/Utilities/UnitVectors.hpp"
0017 #include "ActsExamples/EventData/IndexSourceLink.hpp"
0018 #include "ActsExamples/EventData/Measurement.hpp"
0019
0020 #include <TFile.h>
0021
0022 using namespace Acts;
0023 using namespace ActsPlugins;
0024
0025 namespace detail {
0026
0027 template <typename Array>
0028 std::size_t fillChargeMatrix(Array& arr, const ActsExamples::Cluster& cluster,
0029 std::size_t size0 = 7u, std::size_t size1 = 7u) {
0030
0031
0032 double totalAct = 0;
0033 for (const ActsExamples::Cluster::Cell& cell : cluster.channels) {
0034 totalAct += cell.activation;
0035 }
0036 std::vector<double> weights;
0037 for (const ActsExamples::Cluster::Cell& cell : cluster.channels) {
0038 weights.push_back(cell.activation / totalAct);
0039 }
0040
0041 double acc0 = 0;
0042 double acc1 = 0;
0043 for (std::size_t i = 0; i < cluster.channels.size(); i++) {
0044 acc0 += cluster.channels.at(i).bin[0] * weights.at(i);
0045 acc1 += cluster.channels.at(i).bin[1] * weights.at(i);
0046 }
0047
0048
0049
0050 int offset0 = static_cast<int>(acc0) - size0 / 2;
0051 int offset1 = static_cast<int>(acc1) - size1 / 2;
0052
0053
0054 arr = Eigen::ArrayXXf::Zero(1, size0 * size1);
0055
0056 for (const ActsExamples::Cluster::Cell& cell : cluster.channels) {
0057
0058 int iMat = cell.bin[0] - offset0;
0059 int jMat = cell.bin[1] - offset1;
0060 if (iMat >= 0 && iMat < static_cast<int>(size0) && jMat >= 0 &&
0061 jMat < static_cast<int>(size1)) {
0062 typename Array::Index index = iMat * size0 + jMat;
0063 if (index < arr.size()) {
0064 arr(index) = cell.activation;
0065 }
0066 }
0067 }
0068 return size0 * size1;
0069 }
0070
0071 }
0072
0073 ActsExamples::NeuralCalibrator::NeuralCalibrator(
0074 const std::filesystem::path& modelPath, std::size_t nComponents,
0075 std::vector<std::size_t> volumeIds)
0076 : m_env(ORT_LOGGING_LEVEL_WARNING, "NeuralCalibrator"),
0077 m_model(m_env, modelPath.c_str()),
0078 m_nComponents{nComponents},
0079 m_volumeIds{std::move(volumeIds)} {}
0080
0081 void ActsExamples::NeuralCalibrator::calibrate(
0082 const MeasurementContainer& measurements, const ClusterContainer* clusters,
0083 const GeometryContext& gctx, const CalibrationContext& cctx,
0084 const SourceLink& sourceLink,
0085 MultiTrajectory<VectorMultiTrajectory>::TrackStateProxy& trackState) const {
0086 trackState.setUncalibratedSourceLink(SourceLink{sourceLink});
0087 const IndexSourceLink& idxSourceLink = sourceLink.get<IndexSourceLink>();
0088 assert((idxSourceLink.index() < measurements.size()) and
0089 "Source link index is outside the container bounds");
0090
0091 if (!rangeContainsValue(m_volumeIds, idxSourceLink.geometryId().volume())) {
0092 m_fallback.calibrate(measurements, clusters, gctx, cctx, sourceLink,
0093 trackState);
0094 return;
0095 }
0096
0097 NetworkBatchInput inputBatch(1, m_nInputs);
0098 auto input = inputBatch(0, Eigen::all);
0099
0100
0101 std::size_t matSize0 = 7u;
0102 std::size_t matSize1 = 7u;
0103 std::size_t iInput = ::detail::fillChargeMatrix(
0104 input, (*clusters)[idxSourceLink.index()], matSize0, matSize1);
0105
0106 input[iInput++] = idxSourceLink.geometryId().volume();
0107 input[iInput++] = idxSourceLink.geometryId().layer();
0108
0109 const Surface& referenceSurface = trackState.referenceSurface();
0110 auto trackParameters = trackState.parameters();
0111
0112 const ConstVariableBoundMeasurementProxy measurement =
0113 measurements.getMeasurement(idxSourceLink.index());
0114
0115 assert(measurement.contains(eBoundLoc0) &&
0116 "Measurement does not contain the required bound loc0");
0117 assert(measurement.contains(eBoundLoc1) &&
0118 "Measurement does not contain the required bound loc1");
0119
0120 auto boundLoc0 = measurement.indexOf(eBoundLoc0);
0121 auto boundLoc1 = measurement.indexOf(eBoundLoc1);
0122
0123 Vector2 localPosition{measurement.parameters()[boundLoc0],
0124 measurement.parameters()[boundLoc1]};
0125 Vector2 localCovariance{measurement.covariance()(boundLoc0, boundLoc0),
0126 measurement.covariance()(boundLoc1, boundLoc1)};
0127
0128 Vector3 dir = makeDirectionFromPhiTheta(trackParameters[eBoundPhi],
0129 trackParameters[eBoundTheta]);
0130 Vector3 globalPosition =
0131 referenceSurface.localToGlobal(gctx, localPosition, dir);
0132
0133
0134
0135
0136
0137
0138 RotationMatrix3 rot =
0139 referenceSurface.referenceFrame(gctx, globalPosition, dir).inverse();
0140 std::pair<double, double> angles = VectorHelpers::incidentAngles(dir, rot);
0141
0142 input[iInput++] = angles.first;
0143 input[iInput++] = angles.second;
0144 input[iInput++] = localPosition[0];
0145 input[iInput++] = localPosition[1];
0146 input[iInput++] = localCovariance[0];
0147 input[iInput++] = localCovariance[1];
0148 if (iInput != m_nInputs) {
0149 throw std::runtime_error("Expected input size of " +
0150 std::to_string(m_nInputs) +
0151 ", got: " + std::to_string(iInput));
0152 }
0153
0154
0155 std::vector<float> output = m_model.runONNXInference(inputBatch).front();
0156
0157
0158
0159
0160 std::size_t nParams = 5 * m_nComponents;
0161 if (output.size() != nParams) {
0162 throw std::runtime_error("Got output vector of size " +
0163 std::to_string(output.size()) +
0164 ", expected size " + std::to_string(nParams));
0165 }
0166
0167
0168 std::size_t iMax = 0;
0169 if (m_nComponents > 1) {
0170 iMax = std::distance(
0171 output.begin(),
0172 std::max_element(output.begin(), output.begin() + m_nComponents));
0173 }
0174 std::size_t iLoc0 = m_nComponents + iMax * 2;
0175 std::size_t iVar0 = 3 * m_nComponents + iMax * 2;
0176
0177 visit_measurement(measurement.size(), [&](auto N) -> void {
0178 constexpr std::size_t kMeasurementSize = decltype(N)::value;
0179 const ConstFixedBoundMeasurementProxy<kMeasurementSize> fixedMeasurement =
0180 static_cast<ConstFixedBoundMeasurementProxy<kMeasurementSize>>(
0181 measurement);
0182
0183 ActsVector<kMeasurementSize> calibratedParameters =
0184 fixedMeasurement.parameters();
0185 ActsSquareMatrix<kMeasurementSize> calibratedCovariance =
0186 fixedMeasurement.covariance();
0187
0188 calibratedParameters[boundLoc0] = output[iLoc0];
0189 calibratedParameters[boundLoc1] = output[iLoc0 + 1];
0190 calibratedCovariance(boundLoc0, boundLoc0) = output[iVar0];
0191 calibratedCovariance(boundLoc1, boundLoc1) = output[iVar0 + 1];
0192
0193 trackState.allocateCalibrated(calibratedParameters, calibratedCovariance);
0194 trackState.setProjectorSubspaceIndices(fixedMeasurement.subspaceIndices());
0195 });
0196 }