Back to home page

EIC code displayed by LXR

 
 

    


Warning, /acts/Examples/Algorithms/Digitization/share/default-smearing-config-generic.json is written in an unsupported language. File is not indexed.

0001 {
0002     "acts-geometry-hierarchy-map": {
0003         "format-version": 0,
0004         "value-identifier": "digitization-configuration"
0005     },
0006     "entries": [
0007         {
0008             "volume": 7,
0009             "value": {
0010                 "smearing": [
0011                     {
0012                         "index": 0,
0013                         "mean": 0.0,
0014                         "stddev": 0.014433756729740645,
0015                         "type": "Gauss"
0016                     },
0017                     {
0018                         "index": 1,
0019                         "mean": 0.0,
0020                         "stddev": 0.014433756729740645,
0021                         "type": "Gauss"
0022                     }
0023                 ]
0024             }
0025         },
0026         {
0027             "volume": 8,
0028             "value": {
0029                 "smearing": [
0030                     {
0031                         "index": 0,
0032                         "mean": 0.0,
0033                         "stddev": 0.014433756729740645,
0034                         "type": "Gauss"
0035                     },
0036                     {
0037                         "index": 1,
0038                         "mean": 0.0,
0039                         "stddev": 0.014433756729740645,
0040                         "type": "Gauss"
0041                     }
0042                 ]
0043             }
0044         },
0045         {
0046             "volume": 9,
0047             "value": {
0048                 "smearing": [
0049                     {
0050                         "index": 0,
0051                         "mean": 0.0,
0052                         "stddev": 0.014433756729740645,
0053                         "type": "Gauss"
0054                     },
0055                     {
0056                         "index": 1,
0057                         "mean": 0.0,
0058                         "stddev": 0.014433756729740645,
0059                         "type": "Gauss"
0060                     }
0061                 ]
0062             }
0063         },
0064         {
0065             "volume": 12,
0066             "value": {
0067                 "smearing": [
0068                     {
0069                         "index": 0,
0070                         "mean": 0.0,
0071                         "stddev": 0.023094010767585032,
0072                         "type": "Gauss"
0073                     },
0074                     {
0075                         "index": 1,
0076                         "mean": 0.0,
0077                         "stddev": 0.34641016151377546,
0078                         "type": "Gauss"
0079                     }
0080                 ]
0081             }
0082         },
0083         {
0084             "volume": 13,
0085             "value": {
0086                 "smearing": [
0087                     {
0088                         "index": 0,
0089                         "mean": 0.0,
0090                         "stddev": 0.023094010767585032,
0091                         "type": "Gauss"
0092                     },
0093                     {
0094                         "index": 1,
0095                         "mean": 0.0,
0096                         "stddev": 0.34641016151377546,
0097                         "type": "Gauss"
0098                     }
0099                 ]
0100             }
0101         },
0102         {
0103             "volume": 14,
0104             "value": {
0105                 "smearing": [
0106                     {
0107                         "index": 0,
0108                         "mean": 0.0,
0109                         "stddev": 0.023094010767585032,
0110                         "type": "Gauss"
0111                     },
0112                     {
0113                         "index": 1,
0114                         "mean": 0.0,
0115                         "stddev": 0.34641016151377546,
0116                         "type": "Gauss"
0117                     }
0118                 ]
0119             }
0120         },
0121         {
0122             "volume": 16,
0123             "value": {
0124                 "smearing": [
0125                     {
0126                         "index": 0,
0127                         "mean": 0.0,
0128                         "stddev": 0.034641016151377546,
0129                         "type": "Gauss"
0130                     },
0131                     {
0132                         "index": 1,
0133                         "mean": 0.0,
0134                         "stddev": 3.1176914536239795,
0135                         "type": "Gauss"
0136                     }
0137                 ]
0138             }
0139         },
0140         {
0141             "volume": 17,
0142             "value": {
0143                 "smearing": [
0144                     {
0145                         "index": 0,
0146                         "mean": 0.0,
0147                         "stddev": 0.034641016151377546,
0148                         "type": "Gauss"
0149                     },
0150                     {
0151                         "index": 1,
0152                         "mean": 0.0,
0153                         "stddev": 3.1176914536239795,
0154                         "type": "Gauss"
0155                     }
0156                 ]
0157             }
0158         },
0159         {
0160             "volume": 18,
0161             "value": {
0162                 "smearing": [
0163                     {
0164                         "index": 0,
0165                         "mean": 0.0,
0166                         "stddev": 0.034641016151377546,
0167                         "type": "Gauss"
0168                     },
0169                     {
0170                         "index": 1,
0171                         "mean": 0.0,
0172                         "stddev": 3.1176914536239795,
0173                         "type": "Gauss"
0174                     }
0175                 ]
0176             }
0177         }
0178     ]
0179 }