Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-09-17 08:02:26

0001 // This file is part of the ACTS project.
0002 //
0003 // Copyright (C) 2016 CERN for the benefit of the ACTS project
0004 //
0005 // This Source Code Form is subject to the terms of the Mozilla Public
0006 // License, v. 2.0. If a copy of the MPL was not distributed with this
0007 // file, You can obtain one at https://mozilla.org/MPL/2.0/.
0008 
0009 #include "Acts/Surfaces/detail/VerticesHelper.hpp"
0010 
0011 #include <algorithm>
0012 #include <cmath>
0013 #include <cstddef>
0014 #include <numbers>
0015 
0016 namespace Acts {
0017 
0018 std::vector<double> detail::VerticesHelper::phiSegments(
0019     double phiMin, double phiMax, const std::vector<double>& phiRefs,
0020     unsigned int quarterSegments) {
0021   // Check that the phi range is valid
0022   if (phiMin > phiMax) {
0023     throw std::invalid_argument(
0024         "VerticesHelper::phiSegments ... Minimum phi must be smaller than "
0025         "maximum phi");
0026   }
0027 
0028   // First check that no reference phi is outside the range
0029   for (double phiRef : phiRefs) {
0030     if (phiRef < phiMin || phiRef > phiMax) {
0031       throw std::invalid_argument(
0032           "VerticesHelper::phiSegments ... Reference phi is outside the range "
0033           "of the segment");
0034     }
0035   }
0036   if (quarterSegments == 0u) {
0037     throw std::invalid_argument(
0038         "VerticesHelper::phiSegments ... Number of segments must be larger "
0039         "than 0.");
0040   }
0041   std::vector<double> phiSegments = {phiMin, phiMax};
0042   // Minimum approximation for a circle need
0043   // - if the circle is closed the last point is given twice
0044   for (unsigned int i = 0; i < 4 * quarterSegments + 1; ++i) {
0045     double phiExt =
0046         -std::numbers::pi + i * 2 * std::numbers::pi / (4 * quarterSegments);
0047     if (phiExt > phiMin && phiExt < phiMax &&
0048         std::ranges::none_of(phiSegments, [&phiExt](double phi) {
0049           return std::abs(phi - phiExt) <
0050                  std::numeric_limits<double>::epsilon();
0051         })) {
0052       phiSegments.push_back(phiExt);
0053     }
0054   }
0055   // Add the reference phis
0056   for (const auto& phiRef : phiRefs) {
0057     if (phiRef > phiMin && phiRef < phiMax) {
0058       if (std::ranges::none_of(phiSegments, [&phiRef](double phi) {
0059             return std::abs(phi - phiRef) <
0060                    std::numeric_limits<double>::epsilon();
0061           })) {
0062         phiSegments.push_back(phiRef);
0063       }
0064     }
0065   }
0066 
0067   // Sort the phis
0068   std::ranges::sort(phiSegments);
0069   return phiSegments;
0070 }
0071 
0072 std::vector<Vector2> detail::VerticesHelper::ellipsoidVertices(
0073     double innerRx, double innerRy, double outerRx, double outerRy,
0074     double avgPhi, double halfPhi, unsigned int quarterSegments) {
0075   // List of vertices counter-clockwise starting at smallest phi w.r.t center,
0076   // for both inner/outer ring/segment
0077   std::vector<Vector2> rvertices;  // return vertices
0078   std::vector<Vector2> ivertices;  // inner vertices
0079   std::vector<Vector2> overtices;  // outer verices
0080 
0081   bool innerExists = (innerRx > 0. && innerRy > 0.);
0082   bool closed = std::abs(halfPhi - std::numbers::pi) < s_onSurfaceTolerance;
0083 
0084   std::vector<double> refPhi = {};
0085   if (avgPhi != 0.) {
0086     refPhi.push_back(avgPhi);
0087   }
0088 
0089   // The inner (if exists) and outer bow
0090   if (innerExists) {
0091     ivertices = segmentVertices<Vector2, Transform2>(
0092         {innerRx, innerRy}, avgPhi - halfPhi, avgPhi + halfPhi, refPhi,
0093         quarterSegments);
0094   }
0095   overtices = segmentVertices<Vector2, Transform2>(
0096       {outerRx, outerRy}, avgPhi - halfPhi, avgPhi + halfPhi, refPhi,
0097       quarterSegments);
0098 
0099   // We want to keep the same counter-clockwise orientation for displaying
0100   if (!innerExists) {
0101     if (!closed) {
0102       // Add the center case we have a sector
0103       rvertices.push_back(Vector2(0., 0.));
0104     }
0105     rvertices.insert(rvertices.end(), overtices.begin(), overtices.end());
0106   } else if (!closed) {
0107     rvertices.insert(rvertices.end(), overtices.begin(), overtices.end());
0108     rvertices.insert(rvertices.end(), ivertices.rbegin(), ivertices.rend());
0109   } else {
0110     rvertices.insert(rvertices.end(), overtices.begin(), overtices.end());
0111     rvertices.insert(rvertices.end(), ivertices.begin(), ivertices.end());
0112   }
0113   return rvertices;
0114 }
0115 
0116 std::vector<Vector2> detail::VerticesHelper::circularVertices(
0117     double innerR, double outerR, double avgPhi, double halfPhi,
0118     unsigned int quarterSegments) {
0119   return ellipsoidVertices(innerR, innerR, outerR, outerR, avgPhi, halfPhi,
0120                            quarterSegments);
0121 }
0122 
0123 bool detail::VerticesHelper::onHyperPlane(const std::vector<Vector3>& vertices,
0124                                           double tolerance) {
0125   // Obvious always on one surface
0126   if (vertices.size() < 4) {
0127     return true;
0128   }
0129   // Create the hyperplane
0130   auto hyperPlane = Eigen::Hyperplane<double, 3>::Through(
0131       vertices[0], vertices[1], vertices[2]);
0132   for (std::size_t ip = 3; ip < vertices.size(); ++ip) {
0133     if (hyperPlane.absDistance(vertices[ip]) > tolerance) {
0134       return false;
0135     }
0136   }
0137   return true;
0138 }
0139 
0140 Vector2 detail::VerticesHelper::computeClosestPointOnPolygon(
0141     const Vector2& point, std::span<const Vector2> vertices,
0142     const SquareMatrix2& metric) {
0143   auto squaredNorm = [&](const Vector2& x) {
0144     return (x.transpose() * metric * x).value();
0145   };
0146 
0147   // calculate the closest position on the segment between `ll0` and `ll1` to
0148   // the point as measured by the metric induced by the metric matrix
0149   auto closestOnSegment = [&](auto&& ll0, auto&& ll1) {
0150     // normal vector and position of the closest point along the normal
0151     auto n = ll1 - ll0;
0152     auto n_transformed = metric * n;
0153     auto f = n.dot(n_transformed);
0154     auto u = std::isnormal(f)
0155                  ? (point - ll0).dot(n_transformed) / f
0156                  : 0.5;  // ll0 and ll1 are so close it doesn't matter
0157     // u must be in [0, 1] to still be on the polygon segment
0158     return ll0 + std::clamp(u, 0.0, 1.0) * n;
0159   };
0160 
0161   auto iv = std::begin(vertices);
0162   Vector2 l0 = *iv;
0163   Vector2 l1 = *(++iv);
0164   Vector2 closest = closestOnSegment(l0, l1);
0165   auto closestDist = squaredNorm(closest - point);
0166   // Calculate the closest point on other connecting lines and compare distances
0167   for (++iv; iv != std::end(vertices); ++iv) {
0168     l0 = l1;
0169     l1 = *iv;
0170     Vector2 current = closestOnSegment(l0, l1);
0171     auto currentDist = squaredNorm(current - point);
0172     if (currentDist < closestDist) {
0173       closest = current;
0174       closestDist = currentDist;
0175     }
0176   }
0177   // final edge from last vertex back to the first vertex
0178   Vector2 last = closestOnSegment(l1, *std::begin(vertices));
0179   if (squaredNorm(last - point) < closestDist) {
0180     closest = last;
0181   }
0182   return closest;
0183 }
0184 
0185 Vector2 detail::VerticesHelper::computeEuclideanClosestPointOnRectangle(
0186     const Vector2& point, const Vector2& lowerLeft, const Vector2& upperRight) {
0187   /*
0188    *
0189    *        |                 |
0190    *   IV   |       V         | I
0191    *        |                 |
0192    *  ------------------------------
0193    *        |                 |
0194    *        |                 |
0195    *   VIII |     INSIDE      | VI
0196    *        |                 |
0197    *        |                 |
0198    *  ------------------------------
0199    *        |                 |
0200    *   III  |      VII        | II
0201    *        |                 |
0202    *
0203    */
0204 
0205   double l0 = point[0];
0206   double l1 = point[1];
0207   double loc0Min = lowerLeft[0];
0208   double loc0Max = upperRight[0];
0209   double loc1Min = lowerLeft[1];
0210   double loc1Max = upperRight[1];
0211 
0212   // check if inside
0213   if (loc0Min <= l0 && l0 < loc0Max && loc1Min <= l1 && l1 < loc1Max) {
0214     // INSIDE
0215     double dist = std::abs(loc0Max - l0);
0216     Vector2 cls(loc0Max, l1);
0217 
0218     double test = std::abs(loc0Min - l0);
0219     if (test <= dist) {
0220       dist = test;
0221       cls = {loc0Min, l1};
0222     }
0223 
0224     test = std::abs(loc1Max - l1);
0225     if (test <= dist) {
0226       dist = test;
0227       cls = {l0, loc1Max};
0228     }
0229 
0230     test = std::abs(loc1Min - l1);
0231     if (test <= dist) {
0232       return {l0, loc1Min};
0233     }
0234     return cls;
0235   } else {
0236     // OUTSIDE, check sectors
0237     if (l0 > loc0Max) {
0238       if (l1 > loc1Max) {  // I
0239         return {loc0Max, loc1Max};
0240       } else if (l1 <= loc1Min) {  // II
0241         return {loc0Max, loc1Min};
0242       } else {  // VI
0243         return {loc0Max, l1};
0244       }
0245     } else if (l0 < loc0Min) {
0246       if (l1 > loc1Max) {  // IV
0247         return {loc0Min, loc1Max};
0248       } else if (l1 <= loc1Min) {  // III
0249         return {loc0Min, loc1Min};
0250       } else {  // VIII
0251         return {loc0Min, l1};
0252       }
0253     } else {
0254       if (l1 > loc1Max) {  // V
0255         return {l0, loc1Max};
0256       } else {  // l1 <= loc1Min # VII
0257         return {l0, loc1Min};
0258       }
0259       // third case not necessary, see INSIDE above
0260     }
0261   }
0262 }
0263 
0264 Vector2 detail::VerticesHelper::computeClosestPointOnAlignedBox(
0265     const Vector2& lowerLeft, const Vector2& upperRight, const Vector2& point,
0266     const SquareMatrix2& metric) {
0267   Vector2 closestPoint;
0268 
0269   if (metric.isIdentity()) {
0270     closestPoint =
0271         detail::VerticesHelper::computeEuclideanClosestPointOnRectangle(
0272             point, lowerLeft, upperRight);
0273   } else {
0274     // TODO there might be a more optimal way to compute the closest point to a
0275     // box with metric
0276 
0277     std::array<Vector2, 4> vertices = {{lowerLeft,
0278                                         {upperRight[0], lowerLeft[1]},
0279                                         upperRight,
0280                                         {lowerLeft[0], upperRight[1]}}};
0281 
0282     closestPoint = detail::VerticesHelper::computeClosestPointOnPolygon(
0283         point, vertices, metric);
0284   }
0285 
0286   return closestPoint;
0287 }
0288 
0289 }  // namespace Acts