File indexing completed on 2025-01-18 09:11:29
0001
0002
0003
0004
0005
0006
0007
0008
0009 #include "Acts/Surfaces/ConeSurface.hpp"
0010
0011 #include "Acts/Geometry/GeometryObject.hpp"
0012 #include "Acts/Surfaces/BoundaryTolerance.hpp"
0013 #include "Acts/Surfaces/SurfaceError.hpp"
0014 #include "Acts/Surfaces/detail/AlignmentHelper.hpp"
0015 #include "Acts/Surfaces/detail/FacesHelper.hpp"
0016 #include "Acts/Surfaces/detail/VerticesHelper.hpp"
0017 #include "Acts/Utilities/Intersection.hpp"
0018 #include "Acts/Utilities/ThrowAssert.hpp"
0019 #include "Acts/Utilities/detail/RealQuadraticEquation.hpp"
0020
0021 #include <algorithm>
0022 #include <cmath>
0023 #include <limits>
0024 #include <numbers>
0025 #include <stdexcept>
0026 #include <utility>
0027 #include <vector>
0028
0029 namespace Acts {
0030
0031 using VectorHelpers::perp;
0032 using VectorHelpers::phi;
0033
0034 ConeSurface::ConeSurface(const ConeSurface& other)
0035 : GeometryObject(), RegularSurface(other), m_bounds(other.m_bounds) {}
0036
0037 ConeSurface::ConeSurface(const GeometryContext& gctx, const ConeSurface& other,
0038 const Transform3& shift)
0039 : GeometryObject(),
0040 RegularSurface(gctx, other, shift),
0041 m_bounds(other.m_bounds) {}
0042
0043 ConeSurface::ConeSurface(const Transform3& transform, double alpha,
0044 bool symmetric)
0045 : GeometryObject(),
0046 RegularSurface(transform),
0047 m_bounds(std::make_shared<const ConeBounds>(alpha, symmetric)) {}
0048
0049 ConeSurface::ConeSurface(const Transform3& transform, double alpha, double zmin,
0050 double zmax, double halfPhi)
0051 : GeometryObject(),
0052 RegularSurface(transform),
0053 m_bounds(std::make_shared<const ConeBounds>(alpha, zmin, zmax, halfPhi)) {
0054 }
0055
0056 ConeSurface::ConeSurface(const Transform3& transform,
0057 std::shared_ptr<const ConeBounds> cbounds)
0058 : GeometryObject(),
0059 RegularSurface(transform),
0060 m_bounds(std::move(cbounds)) {
0061 throw_assert(m_bounds, "ConeBounds must not be nullptr");
0062 }
0063
0064 Vector3 ConeSurface::referencePosition(const GeometryContext& gctx,
0065 AxisDirection aDir) const {
0066 const Vector3& sfCenter = center(gctx);
0067
0068
0069 if (aDir == AxisDirection::AxisR || aDir == AxisDirection::AxisRPhi) {
0070 return Vector3(sfCenter.x() + bounds().r(sfCenter.z()), sfCenter.y(),
0071 sfCenter.z());
0072 }
0073
0074
0075
0076
0077 return sfCenter;
0078 }
0079
0080 Surface::SurfaceType ConeSurface::type() const {
0081 return Surface::Cone;
0082 }
0083
0084 ConeSurface& ConeSurface::operator=(const ConeSurface& other) {
0085 if (this != &other) {
0086 Surface::operator=(other);
0087 m_bounds = other.m_bounds;
0088 }
0089 return *this;
0090 }
0091
0092 Vector3 ConeSurface::rotSymmetryAxis(const GeometryContext& gctx) const {
0093 return transform(gctx).matrix().block<3, 1>(0, 2);
0094 }
0095
0096 RotationMatrix3 ConeSurface::referenceFrame(
0097 const GeometryContext& gctx, const Vector3& position,
0098 const Vector3& ) const {
0099 RotationMatrix3 mFrame;
0100
0101
0102 Vector3 measY = rotSymmetryAxis(gctx);
0103
0104 Vector3 measDepth = Vector3(position.x(), position.y(), 0.).normalized();
0105
0106 Vector3 measX(measY.cross(measDepth).normalized());
0107
0108 mFrame.col(0) = measX;
0109 mFrame.col(1) = measY;
0110 mFrame.col(2) = measDepth;
0111
0112
0113
0114 return mFrame;
0115 }
0116
0117 Vector3 ConeSurface::localToGlobal(const GeometryContext& gctx,
0118 const Vector2& lposition) const {
0119
0120 double r = lposition[1] * bounds().tanAlpha();
0121 double phi = lposition[0] / r;
0122 Vector3 loc3Dframe(r * cos(phi), r * sin(phi), lposition[1]);
0123 return transform(gctx) * loc3Dframe;
0124 }
0125
0126 Result<Vector2> ConeSurface::globalToLocal(const GeometryContext& gctx,
0127 const Vector3& position,
0128 double tolerance) const {
0129 Vector3 loc3Dframe = transform(gctx).inverse() * position;
0130 double r = loc3Dframe.z() * bounds().tanAlpha();
0131 if (std::abs(perp(loc3Dframe) - r) > tolerance) {
0132 return Result<Vector2>::failure(SurfaceError::GlobalPositionNotOnSurface);
0133 }
0134 return Result<Vector2>::success(
0135 Vector2(r * atan2(loc3Dframe.y(), loc3Dframe.x()), loc3Dframe.z()));
0136 }
0137
0138 double ConeSurface::pathCorrection(const GeometryContext& gctx,
0139 const Vector3& position,
0140 const Vector3& direction) const {
0141
0142 Vector3 posLocal = transform(gctx).inverse() * position;
0143 double phi = VectorHelpers::phi(posLocal);
0144 double sgn = posLocal.z() > 0. ? -1. : +1.;
0145 double cosAlpha = std::cos(bounds().get(ConeBounds::eAlpha));
0146 double sinAlpha = std::sin(bounds().get(ConeBounds::eAlpha));
0147 Vector3 normalC(cos(phi) * cosAlpha, sin(phi) * cosAlpha, sgn * sinAlpha);
0148 normalC = transform(gctx) * normalC;
0149
0150 double cAlpha = normalC.dot(direction);
0151 return std::abs(1. / cAlpha);
0152 }
0153
0154 std::string ConeSurface::name() const {
0155 return "Acts::ConeSurface";
0156 }
0157
0158 Vector3 ConeSurface::normal(const GeometryContext& gctx,
0159 const Vector2& lposition) const {
0160
0161 double phi = lposition[0] / (bounds().r(lposition[1])),
0162 sgn = lposition[1] > 0 ? -1. : +1.;
0163 double cosAlpha = std::cos(bounds().get(ConeBounds::eAlpha));
0164 double sinAlpha = std::sin(bounds().get(ConeBounds::eAlpha));
0165 Vector3 localNormal(cos(phi) * cosAlpha, sin(phi) * cosAlpha, sgn * sinAlpha);
0166 return Vector3(transform(gctx).linear() * localNormal);
0167 }
0168
0169 Vector3 ConeSurface::normal(const GeometryContext& gctx,
0170 const Vector3& position) const {
0171
0172
0173 Vector3 pos3D = transform(gctx).inverse() * position;
0174 pos3D.z() = 0;
0175 return pos3D.normalized();
0176 }
0177
0178 const ConeBounds& ConeSurface::bounds() const {
0179
0180 return (*m_bounds.get());
0181 }
0182
0183 Polyhedron ConeSurface::polyhedronRepresentation(
0184 const GeometryContext& gctx, unsigned int quarterSegments) const {
0185
0186 std::vector<Vector3> vertices;
0187 std::vector<Polyhedron::FaceType> faces;
0188 std::vector<Polyhedron::FaceType> triangularMesh;
0189 double minZ = bounds().get(ConeBounds::eMinZ);
0190 double maxZ = bounds().get(ConeBounds::eMaxZ);
0191
0192 if (minZ == -std::numeric_limits<double>::infinity() ||
0193 maxZ == std::numeric_limits<double>::infinity()) {
0194 throw std::domain_error(
0195 "Polyhedron representation of boundless surface is not possible");
0196 }
0197
0198 auto ctransform = transform(gctx);
0199
0200
0201 bool tipExists = false;
0202 if (minZ * maxZ <= s_onSurfaceTolerance) {
0203 vertices.push_back(ctransform * Vector3(0., 0., 0.));
0204 tipExists = true;
0205 }
0206
0207
0208 double hPhiSec = bounds().get(ConeBounds::eHalfPhiSector);
0209 double avgPhi = bounds().get(ConeBounds::eAveragePhi);
0210 std::vector<double> refPhi = {};
0211 if (bool fullCone = (hPhiSec == std::numbers::pi); !fullCone) {
0212 refPhi = {avgPhi};
0213 }
0214
0215
0216 std::vector<double> coneSides;
0217 if (std::abs(minZ) > s_onSurfaceTolerance) {
0218 coneSides.push_back(minZ);
0219 }
0220 if (std::abs(maxZ) > s_onSurfaceTolerance) {
0221 coneSides.push_back(maxZ);
0222 }
0223
0224 for (auto& z : coneSides) {
0225 std::size_t firstIv = vertices.size();
0226
0227 double r = std::abs(z) * bounds().tanAlpha();
0228 Vector3 zoffset(0., 0., z);
0229 auto svertices = detail::VerticesHelper::segmentVertices(
0230 {r, r}, avgPhi - hPhiSec, avgPhi + hPhiSec, refPhi, quarterSegments,
0231 zoffset, ctransform);
0232 vertices.insert(vertices.end(), svertices.begin(), svertices.end());
0233
0234 if (tipExists) {
0235 for (std::size_t iv = firstIv + 1; iv < svertices.size() + firstIv;
0236 ++iv) {
0237 std::size_t one = 0, two = iv, three = iv - 1;
0238 if (z < 0.) {
0239 std::swap(two, three);
0240 }
0241 faces.push_back({one, two, three});
0242 }
0243 }
0244 }
0245
0246
0247 if (tipExists) {
0248 triangularMesh = faces;
0249 } else {
0250 auto facesMesh = detail::FacesHelper::cylindricalFaceMesh(vertices);
0251 faces = facesMesh.first;
0252 triangularMesh = facesMesh.second;
0253 }
0254
0255 return Polyhedron(vertices, faces, triangularMesh, false);
0256 }
0257
0258 detail::RealQuadraticEquation ConeSurface::intersectionSolver(
0259 const GeometryContext& gctx, const Vector3& position,
0260 const Vector3& direction) const {
0261
0262 Transform3 invTrans = transform(gctx).inverse();
0263 Vector3 point1 = invTrans * position;
0264 Vector3 dir1 = invTrans.linear() * direction;
0265
0266
0267 double tan2Alpha = bounds().tanAlpha() * bounds().tanAlpha(),
0268 A = dir1.x() * dir1.x() + dir1.y() * dir1.y() -
0269 tan2Alpha * dir1.z() * dir1.z(),
0270 B = 2 * (dir1.x() * point1.x() + dir1.y() * point1.y() -
0271 tan2Alpha * dir1.z() * point1.z()),
0272 C = point1.x() * point1.x() + point1.y() * point1.y() -
0273 tan2Alpha * point1.z() * point1.z();
0274 if (A == 0.) {
0275 A += 1e-16;
0276 }
0277
0278 return detail::RealQuadraticEquation(A, B, C);
0279 }
0280
0281 SurfaceMultiIntersection ConeSurface::intersect(
0282 const GeometryContext& gctx, const Vector3& position,
0283 const Vector3& direction, const BoundaryTolerance& boundaryTolerance,
0284 double tolerance) const {
0285
0286 auto qe = intersectionSolver(gctx, position, direction);
0287
0288
0289 if (qe.solutions == 0) {
0290 return {{Intersection3D::invalid(), Intersection3D::invalid()}, this};
0291 }
0292
0293
0294 Vector3 solution1 = position + qe.first * direction;
0295 IntersectionStatus status1 = std::abs(qe.first) < std::abs(tolerance)
0296 ? IntersectionStatus::onSurface
0297 : IntersectionStatus::reachable;
0298
0299 if (!boundaryTolerance.isInfinite() &&
0300 !isOnSurface(gctx, solution1, direction, boundaryTolerance)) {
0301 status1 = IntersectionStatus::unreachable;
0302 }
0303
0304
0305 Vector3 solution2 = position + qe.first * direction;
0306 IntersectionStatus status2 = std::abs(qe.second) < std::abs(tolerance)
0307 ? IntersectionStatus::onSurface
0308 : IntersectionStatus::reachable;
0309 if (!boundaryTolerance.isInfinite() &&
0310 !isOnSurface(gctx, solution2, direction, boundaryTolerance)) {
0311 status2 = IntersectionStatus::unreachable;
0312 }
0313
0314 const auto& tf = transform(gctx);
0315
0316 Intersection3D first(tf * solution1, qe.first, status1);
0317 Intersection3D second(tf * solution2, qe.second, status2);
0318
0319 if (first.pathLength() <= second.pathLength()) {
0320 return {{first, second}, this};
0321 }
0322 return {{second, first}, this};
0323 }
0324
0325 AlignmentToPathMatrix ConeSurface::alignmentToPathDerivative(
0326 const GeometryContext& gctx, const Vector3& position,
0327 const Vector3& direction) const {
0328 assert(isOnSurface(gctx, position, direction, BoundaryTolerance::Infinite()));
0329
0330
0331 const auto pcRowVec = (position - center(gctx)).transpose().eval();
0332
0333 const auto& rotation = transform(gctx).rotation();
0334
0335 const auto& localXAxis = rotation.col(0);
0336 const auto& localYAxis = rotation.col(1);
0337 const auto& localZAxis = rotation.col(2);
0338
0339 const auto localPos = (rotation.transpose() * position).eval();
0340 const auto dx = direction.dot(localXAxis);
0341 const auto dy = direction.dot(localYAxis);
0342 const auto dz = direction.dot(localZAxis);
0343
0344 const auto tanAlpha2 = bounds().tanAlpha() * bounds().tanAlpha();
0345 const auto norm = 1 / (1 - dz * dz * (1 + tanAlpha2));
0346
0347 const auto& dirRowVec = direction.transpose();
0348
0349
0350
0351 const auto localXAxisToPath =
0352 (-2 * norm * (dx * pcRowVec + localPos.x() * dirRowVec)).eval();
0353 const auto localYAxisToPath =
0354 (-2 * norm * (dy * pcRowVec + localPos.y() * dirRowVec)).eval();
0355 const auto localZAxisToPath =
0356 (2 * norm * tanAlpha2 * (dz * pcRowVec + localPos.z() * dirRowVec) -
0357 4 * norm * norm * (1 + tanAlpha2) *
0358 (dx * localPos.x() + dy * localPos.y() -
0359 dz * localPos.z() * tanAlpha2) *
0360 dz * dirRowVec)
0361 .eval();
0362
0363 const auto [rotToLocalXAxis, rotToLocalYAxis, rotToLocalZAxis] =
0364 detail::rotationToLocalAxesDerivative(rotation);
0365
0366
0367 AlignmentToPathMatrix alignToPath = AlignmentToPathMatrix::Zero();
0368 alignToPath.segment<3>(eAlignmentCenter0) =
0369 2 * norm * (dx * localXAxis.transpose() + dy * localYAxis.transpose());
0370 alignToPath.segment<3>(eAlignmentRotation0) =
0371 localXAxisToPath * rotToLocalXAxis + localYAxisToPath * rotToLocalYAxis +
0372 localZAxisToPath * rotToLocalZAxis;
0373
0374 return alignToPath;
0375 }
0376
0377 ActsMatrix<2, 3> ConeSurface::localCartesianToBoundLocalDerivative(
0378 const GeometryContext& gctx, const Vector3& position) const {
0379 using VectorHelpers::perp;
0380 using VectorHelpers::phi;
0381
0382 const auto& sTransform = transform(gctx);
0383
0384 const Vector3 localPos = sTransform.inverse() * position;
0385 const double lr = perp(localPos);
0386 const double lphi = phi(localPos);
0387 const double lcphi = std::cos(lphi);
0388 const double lsphi = std::sin(lphi);
0389
0390 const double R = localPos.z() * bounds().tanAlpha();
0391 ActsMatrix<2, 3> loc3DToLocBound = ActsMatrix<2, 3>::Zero();
0392 loc3DToLocBound << -R * lsphi / lr, R * lcphi / lr,
0393 lphi * bounds().tanAlpha(), 0, 0, 1;
0394
0395 return loc3DToLocBound;
0396 }
0397
0398 }