Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:11:25

0001 // This file is part of the ACTS project.
0002 //
0003 // Copyright (C) 2016 CERN for the benefit of the ACTS project
0004 //
0005 // This Source Code Form is subject to the terms of the Mozilla Public
0006 // License, v. 2.0. If a copy of the MPL was not distributed with this
0007 // file, You can obtain one at https://mozilla.org/MPL/2.0/.
0008 
0009 #include "Acts/Material/detail/AverageMaterials.hpp"
0010 
0011 #include "Acts/Material/Material.hpp"
0012 
0013 #include <cmath>
0014 
0015 Acts::MaterialSlab Acts::detail::combineSlabs(const MaterialSlab& slab1,
0016                                               const MaterialSlab& slab2) {
0017   const auto& mat1 = slab1.material();
0018   const auto& mat2 = slab2.material();
0019 
0020   // NOTE 2020-08-26 msmk
0021   // the following computations provide purely geometrical averages of the
0022   // material properties. what we are really interested in are the material
0023   // properties that best describe the material interaction of the averaged
0024   // material. It is unclear if the latter can be computed in a general fashion,
0025   // so we stick to the purely geometric averages for now.
0026 
0027   // NOTE 2021-03-24 corentin
0028   // In the case of the atomic number, the averaging is based on the log
0029   // to properly account for the energy loss in multiple material.
0030 
0031   // use double for (intermediate) computations to avoid precision loss
0032   const double thickness1 = static_cast<double>(slab1.thickness());
0033   const double thickness2 = static_cast<double>(slab2.thickness());
0034 
0035   // the thickness properties are purely additive
0036   const double thickness = thickness1 + thickness2;
0037 
0038   // if the two materials are the same there is no need for additional
0039   // computation
0040   if (mat1 == mat2) {
0041     return {mat1, static_cast<float>(thickness)};
0042   }
0043 
0044   // molar amount-of-substance assuming a unit area, i.e. volume = thickness*1*1
0045   const double molarDensity1 = static_cast<double>(mat1.molarDensity());
0046   const double molarDensity2 = static_cast<double>(mat2.molarDensity());
0047 
0048   const double molarAmount1 = molarDensity1 * thickness1;
0049   const double molarAmount2 = molarDensity2 * thickness2;
0050   const double molarAmount = molarAmount1 + molarAmount2;
0051 
0052   // handle vacuum specially
0053   if (!(0.0 < molarAmount)) {
0054     return {Material(), static_cast<float>(thickness)};
0055   }
0056 
0057   // radiation/interaction length follows from consistency argument
0058   const double thicknessX01 = static_cast<double>(slab1.thicknessInX0());
0059   const double thicknessX02 = static_cast<double>(slab2.thicknessInX0());
0060   const double thicknessL01 = static_cast<double>(slab1.thicknessInL0());
0061   const double thicknessL02 = static_cast<double>(slab2.thicknessInL0());
0062 
0063   const double thicknessInX0 = thicknessX01 + thicknessX02;
0064   const double thicknessInL0 = thicknessL01 + thicknessL02;
0065 
0066   const float x0 = static_cast<float>(thickness / thicknessInX0);
0067   const float l0 = static_cast<float>(thickness / thicknessInL0);
0068 
0069   // assume two slabs of materials with N1,N2 atoms/molecules each with atomic
0070   // masses A1,A2 and nuclear charges. We have a total of N = N1 + N2
0071   // atoms/molecules and should have average atomic masses and nuclear charges
0072   // of
0073   //
0074   //     A = (N1*A1 + N2*A2) / (N1+N2) = (N1/N)*A1 + (N2/N)*A2 = W1*A1 + W2*A2
0075   //
0076   // the number of atoms/molecules in a given volume V with molar density rho is
0077   //
0078   //     N = V * rho * Na
0079   //
0080   // where Na is the Avogadro constant. the weighting factors follow as
0081   //
0082   //     Wi = (Vi*rhoi*Na) / (V1*rho1*Na + V2*rho2*Na)
0083   //        = (Vi*rhoi) / (V1*rho1 + V2*rho2)
0084   //
0085   // which can be computed from the molar amount-of-substance above.
0086   const double ar1 = static_cast<double>(mat1.Ar());
0087   const double ar2 = static_cast<double>(mat2.Ar());
0088 
0089   const double molarWeight1 = molarAmount1 / molarAmount;
0090   const double molarWeight2 = molarAmount2 / molarAmount;
0091   const float ar = static_cast<float>(molarWeight1 * ar1 + molarWeight2 * ar2);
0092 
0093   // In the case of the atomic number, its main use is the computation
0094   // of the mean excitation energy approximated in ATL-SOFT-PUB-2008-003 as :
0095   //     I = 16 eV * Z^(0.9)
0096   // This mean excitation energy will then be used to compute energy loss
0097   // which will be proportional to :
0098   //     Eloss ~ ln(1/I)*thickness
0099   // In the case of two successive material :
0100   //     Eloss = El1 + El2
0101   //           ~ ln(Z1)*t1 + ln(Z2)*t2
0102   //           ~ ln(Z)*t
0103   // To respect this the average atomic number thus need to be defined as :
0104   //     ln(Z)*t = ln(Z1)*t1 + ln(Z2)*t2
0105   //           Z = Exp( ln(Z1)*t1/t + ln(Z2)*t2/t )
0106   const double z1 = static_cast<double>(mat1.Z());
0107   const double z2 = static_cast<double>(mat2.Z());
0108 
0109   const double thicknessWeight1 = thickness1 / thickness;
0110   const double thicknessWeight2 = thickness2 / thickness;
0111   float z = 0.f;
0112   if (z1 > 0. && z2 > 0.) {
0113     z = static_cast<float>(std::exp(thicknessWeight1 * std::log(z1) +
0114                                     thicknessWeight2 * std::log(z2)));
0115   } else {
0116     z = static_cast<float>(thicknessWeight1 * z1 + thicknessWeight2 * z2);
0117   }
0118 
0119   // compute average molar density by dividing the total amount-of-substance by
0120   // the total volume for the same unit area, i.e. volume = totalThickness*1*1
0121   const float molarDensity = static_cast<float>(molarAmount / thickness);
0122 
0123   return {Material::fromMolarDensity(x0, l0, ar, z, molarDensity),
0124           static_cast<float>(thickness)};
0125 }