File indexing completed on 2025-01-18 09:11:05
0001
0002
0003
0004
0005
0006
0007
0008
0009 #pragma once
0010
0011 #include "Acts/Definitions/TrackParametrization.hpp"
0012 #include "Acts/EventData/MultiComponentTrackParameters.hpp"
0013 #include "Acts/EventData/MultiTrajectory.hpp"
0014 #include "Acts/EventData/MultiTrajectoryHelpers.hpp"
0015 #include "Acts/Propagator/detail/PointwiseMaterialInteraction.hpp"
0016 #include "Acts/Surfaces/Surface.hpp"
0017 #include "Acts/TrackFitting/GsfOptions.hpp"
0018 #include "Acts/TrackFitting/detail/GsfComponentMerging.hpp"
0019 #include "Acts/TrackFitting/detail/GsfUtils.hpp"
0020 #include "Acts/TrackFitting/detail/KalmanUpdateHelpers.hpp"
0021 #include "Acts/Utilities/Helpers.hpp"
0022 #include "Acts/Utilities/Zip.hpp"
0023
0024 #include <ios>
0025 #include <map>
0026
0027 namespace Acts::detail {
0028
0029 template <typename traj_t>
0030 struct GsfResult {
0031
0032 traj_t* fittedStates{nullptr};
0033
0034
0035 MultiTrajectoryTraits::IndexType currentTip = MultiTrajectoryTraits::kInvalid;
0036
0037
0038 MultiTrajectoryTraits::IndexType lastMeasurementTip =
0039 MultiTrajectoryTraits::kInvalid;
0040
0041
0042
0043 std::optional<MultiComponentBoundTrackParameters> lastMeasurementState;
0044
0045
0046 std::size_t measurementStates = 0;
0047 std::size_t measurementHoles = 0;
0048 std::size_t processedStates = 0;
0049
0050 std::vector<const Surface*> visitedSurfaces;
0051 std::vector<const Surface*> surfacesVisitedBwdAgain;
0052
0053
0054 Updatable<std::size_t> nInvalidBetheHeitler;
0055 Updatable<double> maxPathXOverX0;
0056 Updatable<double> sumPathXOverX0;
0057
0058
0059 Result<void> result{Result<void>::success()};
0060
0061
0062 std::vector<GsfComponent> componentCache;
0063 };
0064
0065
0066 template <typename bethe_heitler_approx_t, typename traj_t>
0067 struct GsfActor {
0068
0069 GsfActor() = default;
0070
0071 using ComponentCache = GsfComponent;
0072
0073
0074 using result_type = GsfResult<traj_t>;
0075
0076
0077 struct Config {
0078
0079 std::size_t maxComponents = 16;
0080
0081
0082 const std::map<GeometryIdentifier, SourceLink>* inputMeasurements = nullptr;
0083
0084
0085
0086 const bethe_heitler_approx_t* bethe_heitler_approx = nullptr;
0087
0088
0089 bool multipleScattering = true;
0090
0091
0092 double weightCutoff = 1.0e-4;
0093
0094
0095
0096
0097 bool disableAllMaterialHandling = false;
0098
0099
0100 bool abortOnError = false;
0101
0102
0103
0104 std::optional<std::size_t> numberMeasurements;
0105
0106
0107 GsfExtensions<traj_t> extensions;
0108
0109
0110
0111
0112 bool inReversePass = false;
0113
0114
0115 ComponentMergeMethod mergeMethod = ComponentMergeMethod::eMaxWeight;
0116
0117 const Logger* logger{nullptr};
0118
0119
0120 const CalibrationContext* calibrationContext{nullptr};
0121
0122 } m_cfg;
0123
0124 const Logger& logger() const { return *m_cfg.logger; }
0125
0126 struct TemporaryStates {
0127 traj_t traj;
0128 std::vector<MultiTrajectoryTraits::IndexType> tips;
0129 std::map<MultiTrajectoryTraits::IndexType, double> weights;
0130 };
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141 template <typename propagator_state_t, typename stepper_t,
0142 typename navigator_t>
0143 void act(propagator_state_t& state, const stepper_t& stepper,
0144 const navigator_t& navigator, result_type& result,
0145 const Logger& ) const {
0146 assert(result.fittedStates && "No MultiTrajectory set");
0147
0148
0149 if (!result.result.ok()) {
0150 ACTS_WARNING("result.result not ok, return!");
0151 return;
0152 }
0153
0154
0155 auto setErrorOrAbort = [&](auto error) {
0156 if (m_cfg.abortOnError) {
0157 std::abort();
0158 } else {
0159 result.result = error;
0160 }
0161 };
0162
0163
0164
0165 const detail::ScopedGsfInfoPrinterAndChecker printer(state, stepper,
0166 navigator, logger());
0167
0168
0169 if (!navigator.currentSurface(state.navigation)) {
0170 return;
0171 }
0172
0173 const auto& surface = *navigator.currentSurface(state.navigation);
0174 ACTS_VERBOSE("Step is at surface " << surface.geometryId());
0175
0176
0177
0178 [[maybe_unused]] auto stepperComponents =
0179 stepper.constComponentIterable(state.stepping);
0180 assert(detail::weightsAreNormalized(
0181 stepperComponents, [](const auto& cmp) { return cmp.weight(); }));
0182
0183
0184
0185
0186 using Status [[maybe_unused]] = IntersectionStatus;
0187 assert(std::all_of(
0188 stepperComponents.begin(), stepperComponents.end(),
0189 [](const auto& cmp) { return cmp.status() == Status::onSurface; }));
0190
0191
0192
0193 const bool visited = rangeContainsValue(result.visitedSurfaces, &surface);
0194
0195 if (visited) {
0196 ACTS_VERBOSE("Already visited surface, return");
0197 return;
0198 }
0199
0200 result.visitedSurfaces.push_back(&surface);
0201
0202
0203 const auto foundSourceLink =
0204 m_cfg.inputMeasurements->find(surface.geometryId());
0205 const bool haveMaterial =
0206 navigator.currentSurface(state.navigation)->surfaceMaterial() &&
0207 !m_cfg.disableAllMaterialHandling;
0208 const bool haveMeasurement =
0209 foundSourceLink != m_cfg.inputMeasurements->end();
0210
0211 ACTS_VERBOSE(std::boolalpha << "haveMaterial " << haveMaterial
0212 << ", haveMeasurement: " << haveMeasurement);
0213
0214
0215
0216
0217
0218
0219 if (!haveMaterial && !haveMeasurement) {
0220
0221 if (result.processedStates > 0 && surface.associatedDetectorElement()) {
0222 TemporaryStates tmpStates;
0223 noMeasurementUpdate(state, stepper, navigator, result, tmpStates, true);
0224 }
0225 return;
0226 }
0227
0228
0229
0230
0231 if (haveMeasurement) {
0232 result.maxPathXOverX0.update();
0233 result.sumPathXOverX0.update();
0234 result.nInvalidBetheHeitler.update();
0235 }
0236
0237 for (auto cmp : stepper.componentIterable(state.stepping)) {
0238 auto singleState = cmp.singleState(state);
0239 cmp.singleStepper(stepper).transportCovarianceToBound(
0240 singleState.stepping, surface);
0241 }
0242
0243 if (haveMaterial) {
0244 if (haveMeasurement) {
0245 applyMultipleScattering(state, stepper, navigator,
0246 MaterialUpdateStage::PreUpdate);
0247 } else {
0248 applyMultipleScattering(state, stepper, navigator,
0249 MaterialUpdateStage::FullUpdate);
0250 }
0251 }
0252
0253
0254
0255
0256 if (!haveMaterial) {
0257 TemporaryStates tmpStates;
0258
0259 auto res = kalmanUpdate(state, stepper, navigator, result, tmpStates,
0260 foundSourceLink->second);
0261
0262 if (!res.ok()) {
0263 setErrorOrAbort(res.error());
0264 return;
0265 }
0266
0267 updateStepper(state, stepper, tmpStates);
0268 }
0269
0270
0271
0272 else {
0273 TemporaryStates tmpStates;
0274 Result<void> res;
0275
0276 if (haveMeasurement) {
0277 res = kalmanUpdate(state, stepper, navigator, result, tmpStates,
0278 foundSourceLink->second);
0279 } else {
0280 res = noMeasurementUpdate(state, stepper, navigator, result, tmpStates,
0281 false);
0282 }
0283
0284 if (!res.ok()) {
0285 setErrorOrAbort(res.error());
0286 return;
0287 }
0288
0289
0290 std::vector<ComponentCache>& componentCache = result.componentCache;
0291 componentCache.clear();
0292
0293 convoluteComponents(state, stepper, navigator, tmpStates, componentCache,
0294 result);
0295
0296 if (componentCache.empty()) {
0297 ACTS_WARNING(
0298 "No components left after applying energy loss. "
0299 "Is the weight cutoff "
0300 << m_cfg.weightCutoff << " too high?");
0301 ACTS_WARNING("Return to propagator without applying energy loss");
0302 return;
0303 }
0304
0305
0306 const auto finalCmpNumber = std::min(
0307 static_cast<std::size_t>(stepper.maxComponents), m_cfg.maxComponents);
0308 m_cfg.extensions.mixtureReducer(componentCache, finalCmpNumber, surface);
0309
0310 removeLowWeightComponents(componentCache);
0311
0312 updateStepper(state, stepper, navigator, componentCache);
0313 }
0314
0315
0316 if (haveMaterial && haveMeasurement) {
0317 applyMultipleScattering(state, stepper, navigator,
0318 MaterialUpdateStage::PostUpdate);
0319 }
0320 }
0321
0322 template <typename propagator_state_t, typename stepper_t,
0323 typename navigator_t>
0324 bool checkAbort(propagator_state_t& , const stepper_t& ,
0325 const navigator_t& , const result_type& result,
0326 const Logger& ) const {
0327 if (m_cfg.numberMeasurements &&
0328 result.measurementStates == m_cfg.numberMeasurements) {
0329 ACTS_VERBOSE("Stop navigation because all measurements are found");
0330 return true;
0331 }
0332
0333 return false;
0334 }
0335
0336 template <typename propagator_state_t, typename stepper_t,
0337 typename navigator_t>
0338 void convoluteComponents(propagator_state_t& state, const stepper_t& stepper,
0339 const navigator_t& navigator,
0340 const TemporaryStates& tmpStates,
0341 std::vector<ComponentCache>& componentCache,
0342 result_type& result) const {
0343 auto cmps = stepper.componentIterable(state.stepping);
0344 double pathXOverX0 = 0.0;
0345 for (auto [idx, cmp] : zip(tmpStates.tips, cmps)) {
0346 auto proxy = tmpStates.traj.getTrackState(idx);
0347
0348 BoundTrackParameters bound(proxy.referenceSurface().getSharedPtr(),
0349 proxy.filtered(), proxy.filteredCovariance(),
0350 stepper.particleHypothesis(state.stepping));
0351
0352 pathXOverX0 +=
0353 applyBetheHeitler(state, navigator, bound, tmpStates.weights.at(idx),
0354 componentCache, result);
0355 }
0356
0357
0358
0359 result.sumPathXOverX0.tmp() += pathXOverX0 / tmpStates.tips.size();
0360 }
0361
0362 template <typename propagator_state_t, typename navigator_t>
0363 double applyBetheHeitler(const propagator_state_t& state,
0364 const navigator_t& navigator,
0365 const BoundTrackParameters& old_bound,
0366 const double old_weight,
0367 std::vector<ComponentCache>& componentCaches,
0368 result_type& result) const {
0369 const auto& surface = *navigator.currentSurface(state.navigation);
0370 const auto p_prev = old_bound.absoluteMomentum();
0371 const auto& particleHypothesis = old_bound.particleHypothesis();
0372
0373
0374 auto slab = surface.surfaceMaterial()->materialSlab(
0375 old_bound.position(state.geoContext), state.options.direction,
0376 MaterialUpdateStage::FullUpdate);
0377
0378 const auto pathCorrection = surface.pathCorrection(
0379 state.geoContext, old_bound.position(state.geoContext),
0380 old_bound.direction());
0381 slab.scaleThickness(pathCorrection);
0382
0383 const double pathXOverX0 = slab.thicknessInX0();
0384 result.maxPathXOverX0.tmp() =
0385 std::max(result.maxPathXOverX0.tmp(), pathXOverX0);
0386
0387
0388 if (!m_cfg.bethe_heitler_approx->validXOverX0(pathXOverX0)) {
0389 ++result.nInvalidBetheHeitler.tmp();
0390 ACTS_DEBUG(
0391 "Bethe-Heitler approximation encountered invalid value for x/x0="
0392 << pathXOverX0 << " at surface " << surface.geometryId());
0393 }
0394
0395
0396 const auto mixture = m_cfg.bethe_heitler_approx->mixture(pathXOverX0);
0397
0398
0399 for (const auto& gaussian : mixture) {
0400
0401
0402 const auto new_weight = gaussian.weight * old_weight;
0403
0404 if (new_weight < m_cfg.weightCutoff) {
0405 ACTS_VERBOSE("Skip component with weight " << new_weight);
0406 continue;
0407 }
0408
0409 if (gaussian.mean < 1.e-8) {
0410 ACTS_WARNING("Skip component with gaussian " << gaussian.mean << " +- "
0411 << gaussian.var);
0412 continue;
0413 }
0414
0415
0416 auto new_pars = old_bound.parameters();
0417
0418 const auto delta_p = [&]() {
0419 if (state.options.direction == Direction::Forward()) {
0420 return p_prev * (gaussian.mean - 1.);
0421 } else {
0422 return p_prev * (1. / gaussian.mean - 1.);
0423 }
0424 }();
0425
0426 assert(p_prev + delta_p > 0. && "new momentum must be > 0");
0427 new_pars[eBoundQOverP] =
0428 particleHypothesis.qOverP(p_prev + delta_p, old_bound.charge());
0429
0430
0431 auto new_cov = old_bound.covariance().value();
0432
0433 const auto varInvP = [&]() {
0434 if (state.options.direction == Direction::Forward()) {
0435 const auto f = 1. / (p_prev * gaussian.mean);
0436 return f * f * gaussian.var;
0437 } else {
0438 return gaussian.var / (p_prev * p_prev);
0439 }
0440 }();
0441
0442 new_cov(eBoundQOverP, eBoundQOverP) += varInvP;
0443 assert(std::isfinite(new_cov(eBoundQOverP, eBoundQOverP)) &&
0444 "new cov not finite");
0445
0446
0447 componentCaches.push_back({new_weight, new_pars, new_cov});
0448 }
0449
0450 return pathXOverX0;
0451 }
0452
0453
0454
0455
0456
0457 void removeLowWeightComponents(std::vector<ComponentCache>& cmps) const {
0458 auto proj = [](auto& cmp) -> double& { return cmp.weight; };
0459
0460 detail::normalizeWeights(cmps, proj);
0461
0462 auto new_end = std::remove_if(cmps.begin(), cmps.end(), [&](auto& cmp) {
0463 return proj(cmp) < m_cfg.weightCutoff;
0464 });
0465
0466
0467 if (std::distance(cmps.begin(), new_end) == 0) {
0468 cmps = {*std::max_element(
0469 cmps.begin(), cmps.end(),
0470 [&](auto& a, auto& b) { return proj(a) < proj(b); })};
0471 cmps.front().weight = 1.0;
0472 } else {
0473 cmps.erase(new_end, cmps.end());
0474 detail::normalizeWeights(cmps, proj);
0475 }
0476 }
0477
0478
0479 template <typename propagator_state_t, typename stepper_t>
0480 void updateStepper(propagator_state_t& state, const stepper_t& stepper,
0481 const TemporaryStates& tmpStates) const {
0482 auto cmps = stepper.componentIterable(state.stepping);
0483
0484 for (auto [idx, cmp] : zip(tmpStates.tips, cmps)) {
0485
0486
0487 if (tmpStates.weights.at(idx) < m_cfg.weightCutoff) {
0488 cmp.status() = IntersectionStatus::unreachable;
0489 continue;
0490 }
0491
0492 auto proxy = tmpStates.traj.getTrackState(idx);
0493
0494 cmp.pars() =
0495 MultiTrajectoryHelpers::freeFiltered(state.geoContext, proxy);
0496 cmp.cov() = proxy.filteredCovariance();
0497 cmp.weight() = tmpStates.weights.at(idx);
0498 }
0499
0500 stepper.removeMissedComponents(state.stepping);
0501
0502
0503
0504 detail::normalizeWeights(cmps,
0505 [&](auto cmp) -> double& { return cmp.weight(); });
0506 }
0507
0508
0509 template <typename propagator_state_t, typename stepper_t,
0510 typename navigator_t>
0511 void updateStepper(propagator_state_t& state, const stepper_t& stepper,
0512 const navigator_t& navigator,
0513 const std::vector<ComponentCache>& componentCache) const {
0514 const auto& surface = *navigator.currentSurface(state.navigation);
0515
0516
0517 stepper.clearComponents(state.stepping);
0518
0519
0520 for (const auto& [weight, pars, cov] : componentCache) {
0521
0522 BoundTrackParameters bound(surface.getSharedPtr(), pars, cov,
0523 stepper.particleHypothesis(state.stepping));
0524
0525 auto res = stepper.addComponent(state.stepping, std::move(bound), weight);
0526
0527 if (!res.ok()) {
0528 ACTS_ERROR("Error adding component to MultiStepper");
0529 continue;
0530 }
0531
0532 auto& cmp = *res;
0533 auto freeParams = cmp.pars();
0534 cmp.jacToGlobal() = surface.boundToFreeJacobian(
0535 state.geoContext, freeParams.template segment<3>(eFreePos0),
0536 freeParams.template segment<3>(eFreeDir0));
0537 cmp.pathAccumulated() = state.stepping.pathAccumulated;
0538 cmp.jacobian() = BoundMatrix::Identity();
0539 cmp.derivative() = FreeVector::Zero();
0540 cmp.jacTransport() = FreeMatrix::Identity();
0541 }
0542 }
0543
0544
0545
0546 template <typename propagator_state_t, typename stepper_t,
0547 typename navigator_t>
0548 Result<void> kalmanUpdate(propagator_state_t& state, const stepper_t& stepper,
0549 const navigator_t& navigator, result_type& result,
0550 TemporaryStates& tmpStates,
0551 const SourceLink& sourceLink) const {
0552 const auto& surface = *navigator.currentSurface(state.navigation);
0553
0554
0555
0556
0557
0558 bool is_valid_measurement = false;
0559
0560 auto cmps = stepper.componentIterable(state.stepping);
0561 for (auto cmp : cmps) {
0562 auto singleState = cmp.singleState(state);
0563 const auto& singleStepper = cmp.singleStepper(stepper);
0564
0565 auto trackStateProxyRes = detail::kalmanHandleMeasurement(
0566 *m_cfg.calibrationContext, singleState, singleStepper,
0567 m_cfg.extensions, surface, sourceLink, tmpStates.traj,
0568 MultiTrajectoryTraits::kInvalid, false, logger());
0569
0570 if (!trackStateProxyRes.ok()) {
0571 return trackStateProxyRes.error();
0572 }
0573
0574 const auto& trackStateProxy = *trackStateProxyRes;
0575
0576
0577
0578 if (trackStateProxy.typeFlags().test(TrackStateFlag::MeasurementFlag)) {
0579 is_valid_measurement = true;
0580 }
0581
0582 tmpStates.tips.push_back(trackStateProxy.index());
0583 tmpStates.weights[tmpStates.tips.back()] = cmp.weight();
0584 }
0585
0586 computePosteriorWeights(tmpStates.traj, tmpStates.tips, tmpStates.weights);
0587
0588 detail::normalizeWeights(tmpStates.tips, [&](auto idx) -> double& {
0589 return tmpStates.weights.at(idx);
0590 });
0591
0592
0593 ++result.processedStates;
0594
0595
0596 if (is_valid_measurement) {
0597 ++result.measurementStates;
0598 }
0599
0600 addCombinedState(result, tmpStates, surface);
0601 result.lastMeasurementTip = result.currentTip;
0602
0603 using FiltProjector =
0604 MultiTrajectoryProjector<StatesType::eFiltered, traj_t>;
0605 FiltProjector proj{tmpStates.traj, tmpStates.weights};
0606
0607 std::vector<std::tuple<double, BoundVector, BoundMatrix>> v;
0608
0609
0610 for (const auto& idx : tmpStates.tips) {
0611 const auto [w, p, c] = proj(idx);
0612 if (w > 0.0) {
0613 v.push_back({w, p, c});
0614 }
0615 }
0616
0617 normalizeWeights(v, [](auto& c) -> double& { return std::get<double>(c); });
0618
0619 result.lastMeasurementState = MultiComponentBoundTrackParameters(
0620 surface.getSharedPtr(), std::move(v),
0621 stepper.particleHypothesis(state.stepping));
0622
0623
0624 return Result<void>::success();
0625 }
0626
0627 template <typename propagator_state_t, typename stepper_t,
0628 typename navigator_t>
0629 Result<void> noMeasurementUpdate(propagator_state_t& state,
0630 const stepper_t& stepper,
0631 const navigator_t& navigator,
0632 result_type& result,
0633 TemporaryStates& tmpStates,
0634 bool doCovTransport) const {
0635 const auto& surface = *navigator.currentSurface(state.navigation);
0636
0637 const bool precedingMeasurementExists = result.processedStates > 0;
0638
0639
0640
0641 bool isHole = true;
0642
0643 auto cmps = stepper.componentIterable(state.stepping);
0644 for (auto cmp : cmps) {
0645 auto singleState = cmp.singleState(state);
0646 const auto& singleStepper = cmp.singleStepper(stepper);
0647
0648
0649
0650 auto trackStateProxyRes = detail::kalmanHandleNoMeasurement(
0651 singleState, singleStepper, surface, tmpStates.traj,
0652 MultiTrajectoryTraits::kInvalid, doCovTransport, logger(),
0653 precedingMeasurementExists);
0654
0655 if (!trackStateProxyRes.ok()) {
0656 return trackStateProxyRes.error();
0657 }
0658
0659 const auto& trackStateProxy = *trackStateProxyRes;
0660
0661 if (!trackStateProxy.typeFlags().test(TrackStateFlag::HoleFlag)) {
0662 isHole = false;
0663 }
0664
0665 tmpStates.tips.push_back(trackStateProxy.index());
0666 tmpStates.weights[tmpStates.tips.back()] = cmp.weight();
0667 }
0668
0669
0670 if (isHole) {
0671 ++result.measurementHoles;
0672 }
0673
0674 ++result.processedStates;
0675
0676 addCombinedState(result, tmpStates, surface);
0677
0678 return Result<void>::success();
0679 }
0680
0681
0682 template <typename propagator_state_t, typename stepper_t,
0683 typename navigator_t>
0684 void applyMultipleScattering(propagator_state_t& state,
0685 const stepper_t& stepper,
0686 const navigator_t& navigator,
0687 const MaterialUpdateStage& updateStage =
0688 MaterialUpdateStage::FullUpdate) const {
0689 const auto& surface = *navigator.currentSurface(state.navigation);
0690
0691 for (auto cmp : stepper.componentIterable(state.stepping)) {
0692 auto singleState = cmp.singleState(state);
0693 const auto& singleStepper = cmp.singleStepper(stepper);
0694
0695 detail::PointwiseMaterialInteraction interaction(&surface, singleState,
0696 singleStepper);
0697 if (interaction.evaluateMaterialSlab(singleState, navigator,
0698 updateStage)) {
0699
0700 interaction.evaluatePointwiseMaterialInteraction(
0701 m_cfg.multipleScattering, false);
0702
0703
0704 ACTS_VERBOSE("Material effects on surface: "
0705 << surface.geometryId()
0706 << " at update stage: " << updateStage << " are :");
0707 ACTS_VERBOSE("eLoss = "
0708 << interaction.Eloss << ", "
0709 << "variancePhi = " << interaction.variancePhi << ", "
0710 << "varianceTheta = " << interaction.varianceTheta << ", "
0711 << "varianceQoverP = " << interaction.varianceQoverP);
0712
0713
0714 interaction.updateState(singleState, singleStepper, addNoise);
0715
0716 assert(singleState.stepping.cov.array().isFinite().all() &&
0717 "covariance not finite after multi scattering");
0718 }
0719 }
0720 }
0721
0722 void addCombinedState(result_type& result, const TemporaryStates& tmpStates,
0723 const Surface& surface) const {
0724 using PrtProjector =
0725 MultiTrajectoryProjector<StatesType::ePredicted, traj_t>;
0726 using FltProjector =
0727 MultiTrajectoryProjector<StatesType::eFiltered, traj_t>;
0728
0729 if (!m_cfg.inReversePass) {
0730 const auto firstCmpProxy =
0731 tmpStates.traj.getTrackState(tmpStates.tips.front());
0732 const auto isMeasurement =
0733 firstCmpProxy.typeFlags().test(MeasurementFlag);
0734
0735 const auto mask =
0736 isMeasurement
0737 ? TrackStatePropMask::Calibrated | TrackStatePropMask::Predicted |
0738 TrackStatePropMask::Filtered | TrackStatePropMask::Smoothed
0739 : TrackStatePropMask::Calibrated | TrackStatePropMask::Predicted;
0740
0741 auto proxy = result.fittedStates->makeTrackState(mask, result.currentTip);
0742 result.currentTip = proxy.index();
0743
0744 proxy.setReferenceSurface(surface.getSharedPtr());
0745 proxy.copyFrom(firstCmpProxy, mask);
0746
0747 auto [prtMean, prtCov] =
0748 mergeGaussianMixture(tmpStates.tips, surface, m_cfg.mergeMethod,
0749 PrtProjector{tmpStates.traj, tmpStates.weights});
0750 proxy.predicted() = prtMean;
0751 proxy.predictedCovariance() = prtCov;
0752
0753 if (isMeasurement) {
0754 auto [fltMean, fltCov] = mergeGaussianMixture(
0755 tmpStates.tips, surface, m_cfg.mergeMethod,
0756 FltProjector{tmpStates.traj, tmpStates.weights});
0757 proxy.filtered() = fltMean;
0758 proxy.filteredCovariance() = fltCov;
0759 proxy.smoothed() = BoundVector::Constant(-2);
0760 proxy.smoothedCovariance() = BoundSquareMatrix::Constant(-2);
0761 } else {
0762 proxy.shareFrom(TrackStatePropMask::Predicted,
0763 TrackStatePropMask::Filtered);
0764 }
0765
0766 } else {
0767 assert((result.currentTip != MultiTrajectoryTraits::kInvalid &&
0768 "tip not valid"));
0769
0770 result.fittedStates->applyBackwards(
0771 result.currentTip, [&](auto trackState) {
0772 auto fSurface = &trackState.referenceSurface();
0773 if (fSurface == &surface) {
0774 result.surfacesVisitedBwdAgain.push_back(&surface);
0775
0776 if (trackState.hasSmoothed()) {
0777 const auto [smtMean, smtCov] = mergeGaussianMixture(
0778 tmpStates.tips, surface, m_cfg.mergeMethod,
0779 FltProjector{tmpStates.traj, tmpStates.weights});
0780
0781 trackState.smoothed() = smtMean;
0782 trackState.smoothedCovariance() = smtCov;
0783 }
0784 return false;
0785 }
0786 return true;
0787 });
0788 }
0789 }
0790
0791
0792
0793 void setOptions(const GsfOptions<traj_t>& options) {
0794 m_cfg.maxComponents = options.maxComponents;
0795 m_cfg.extensions = options.extensions;
0796 m_cfg.abortOnError = options.abortOnError;
0797 m_cfg.disableAllMaterialHandling = options.disableAllMaterialHandling;
0798 m_cfg.weightCutoff = options.weightCutoff;
0799 m_cfg.mergeMethod = options.componentMergeMethod;
0800 m_cfg.calibrationContext = &options.calibrationContext.get();
0801 }
0802 };
0803
0804 }