![]() |
|
|||
File indexing completed on 2025-07-02 07:50:53
0001 // This file is part of the ACTS project. 0002 // 0003 // Copyright (C) 2016 CERN for the benefit of the ACTS project 0004 // 0005 // This Source Code Form is subject to the terms of the Mozilla Public 0006 // License, v. 2.0. If a copy of the MPL was not distributed with this 0007 // file, You can obtain one at https://mozilla.org/MPL/2.0/. 0008 0009 #pragma once 0010 0011 #include "Acts/Definitions/Algebra.hpp" 0012 #include "Acts/Definitions/Tolerance.hpp" 0013 #include "Acts/Definitions/TrackParametrization.hpp" 0014 #include "Acts/Geometry/GeometryContext.hpp" 0015 #include "Acts/Geometry/Polyhedron.hpp" 0016 #include "Acts/Surfaces/BoundaryTolerance.hpp" 0017 #include "Acts/Surfaces/DiscBounds.hpp" 0018 #include "Acts/Surfaces/RegularSurface.hpp" 0019 #include "Acts/Surfaces/Surface.hpp" 0020 #include "Acts/Surfaces/SurfaceConcept.hpp" 0021 #include "Acts/Utilities/AxisDefinitions.hpp" 0022 #include "Acts/Utilities/Result.hpp" 0023 0024 #include <memory> 0025 #include <numbers> 0026 #include <string> 0027 0028 namespace Acts { 0029 0030 class DetectorElementBase; 0031 class DiscBounds; 0032 class SurfaceBounds; 0033 0034 /// @class DiscSurface 0035 /// 0036 /// Class for a disc surface (or a segment thereof) 0037 /// 0038 /// The DiscSurface is defined by the local polar coordinates @f$ (r,phi) @f$. 0039 /// 0040 /// The surface transform positions the disc such that the origin 0041 /// is at @f$ r=0 @f$, independent of the provided \c DiscBounds. 0042 /// The normal vector of the disc (i.e., the local @f$z@f$-axis) is given by 0043 /// @f$ \vec e_{z} = \vec e_{r} \times\vec e_{phi} @f$. 0044 /// 0045 /// The disc surface The only surface type for which the 0046 /// covariance matrix is NOT given in the reference frame. 0047 /// A conversion from polar to cartesian coordinates needs 0048 /// to happen to transfer the local coordinates onto the 0049 /// cartesian reference frame coordinates. 0050 /// 0051 /// @image html DiscSurface.png 0052 /// 0053 class DiscSurface : public RegularSurface { 0054 friend class Surface; 0055 0056 protected: 0057 /// Constructor for Discs from Transform3, \f$ r_{min}, r_{max} \f$ 0058 /// 0059 /// @param transform is transform that places the disc in the global 3D space 0060 /// @param rmin The inner radius of the disc surface 0061 /// @param rmax The outer radius of the disc surface 0062 /// @param hphisec The opening angle of the disc surface and is optional 0063 /// the default is a full disc 0064 explicit DiscSurface(const Transform3& transform, double rmin, double rmax, 0065 double hphisec = std::numbers::pi); 0066 0067 /// Constructor for Discs from Transform3, \f$ r_{min}, r_{max}, hx_{min}, 0068 /// hx_{max} \f$ 0069 /// This is n this case you have DiscTrapezoidBounds 0070 /// 0071 /// @param transform is transform that places the disc in the global 3D space 0072 /// @param minhalfx The half length in x at minimal r 0073 /// @param maxhalfx The half length in x at maximal r 0074 /// @param minR The outer radius of the disc surface 0075 /// @param maxR The inner radius of the disc surface 0076 /// @param avephi The position in phi (default is 0.) 0077 /// @param stereo The optional stereo angle 0078 explicit DiscSurface(const Transform3& transform, double minhalfx, 0079 double maxhalfx, double minR, double maxR, 0080 double avephi = 0., double stereo = 0.); 0081 0082 /// Constructor for Discs from Transform3 and shared DiscBounds 0083 /// 0084 /// @param transform The transform that positions the disc in global 3D 0085 /// @param dbounds The disc bounds describing the surface coverage 0086 explicit DiscSurface(const Transform3& transform, 0087 std::shared_ptr<const DiscBounds> dbounds = nullptr); 0088 0089 /// Constructor from DetectorElementBase : Element proxy 0090 /// 0091 /// @param dbounds The disc bounds describing the surface coverage 0092 /// @param detelement The detector element represented by this surface 0093 explicit DiscSurface(std::shared_ptr<const DiscBounds> dbounds, 0094 const DetectorElementBase& detelement); 0095 0096 /// Copy Constructor 0097 /// 0098 /// @param other The source surface for the copy 0099 DiscSurface(const DiscSurface& other); 0100 0101 /// Copy constructor - with shift 0102 /// 0103 /// @param gctx The current geometry context object, e.g. alignment 0104 /// @param other is the source cone surface 0105 /// @param shift is the additional transform applied after copying 0106 DiscSurface(const GeometryContext& gctx, const DiscSurface& other, 0107 const Transform3& shift); 0108 0109 public: 0110 /// Assignment operator 0111 /// 0112 /// @param other The source sourface for the assignment 0113 DiscSurface& operator=(const DiscSurface& other); 0114 0115 /// Return the surface type 0116 SurfaceType type() const override; 0117 0118 // User overloads from `RegularSurface` 0119 using RegularSurface::globalToLocal; 0120 using RegularSurface::localToGlobal; 0121 using RegularSurface::normal; 0122 0123 /// Normal vector return 0124 /// 0125 /// @param gctx The current geometry context object, e.g. alignment 0126 /// @param lposition The local position is ignored 0127 /// 0128 /// @return a Vector3 by value 0129 Vector3 normal(const GeometryContext& gctx, 0130 const Vector2& lposition) const final; 0131 0132 /// Get the normal vector of this surface at a given global position 0133 /// @note The @p position is required to be on-surface. 0134 /// @param gctx The current geometry context object, e.g. alignment 0135 /// @param position is the global positiono (for @ref DiscSurface this is ignored) 0136 /// @return The normal vector 0137 Vector3 normal(const GeometryContext& gctx, 0138 const Vector3& position) const final; 0139 0140 /// Get the normal vector, independent of the location 0141 /// @param gctx The current geometry context object, e.g. alignment 0142 /// @return The normal vector 0143 Vector3 normal(const GeometryContext& gctx) const; 0144 0145 /// A reference position for a given axis direction 0146 /// 0147 /// @param gctx The current geometry context object, e.g. alignment 0148 /// @param aDir The axis direction for the reference position request 0149 /// @return position that can beused for this binning 0150 Vector3 referencePosition(const GeometryContext& gctx, 0151 AxisDirection aDir) const final; 0152 0153 /// A reference position value for a given axis direction 0154 /// 0155 /// @param gctx The current geometry context object, e.g. alignment 0156 /// @param aDir the value generated for the reference position 0157 /// 0158 /// @note This calls the parent method except for AxisR 0159 /// 0160 /// @return float to be used for the binning schema 0161 double referencePositionValue(const GeometryContext& gctx, 0162 AxisDirection aDir) const final; 0163 0164 /// This method returns the bounds by reference 0165 const SurfaceBounds& bounds() const final; 0166 0167 /// Local to global transformation 0168 /// For planar surfaces the momentum direction is ignored in the local to 0169 /// global transformation 0170 /// 0171 /// @param gctx The current geometry context object, e.g. alignment 0172 /// @param lposition local 2D position in specialized surface frame 0173 /// 0174 /// @return global position by value 0175 Vector3 localToGlobal(const GeometryContext& gctx, 0176 const Vector2& lposition) const final; 0177 0178 /// Global to local transformation 0179 /// @note the direction is ignored for Disc surfaces in this calculateion 0180 /// 0181 /// @param gctx The current geometry context object, e.g. alignment 0182 /// @param position global 3D position - considered to be on surface but not 0183 /// inside bounds (check is done) 0184 /// @param tolerance optional tolerance within which a point is considered 0185 /// valid on surface 0186 /// 0187 /// @return a Result<Vector2> which can be !ok() if the operation fails 0188 Result<Vector2> globalToLocal( 0189 const GeometryContext& gctx, const Vector3& position, 0190 double tolerance = s_onSurfaceTolerance) const final; 0191 0192 /// Special method for DiscSurface : local<->local transformations polar <-> 0193 /// cartesian 0194 /// 0195 /// @param lpolar is a local position in polar coordinates 0196 /// 0197 /// @return values is local 2D position in cartesian coordinates @todo check 0198 Vector2 localPolarToCartesian(const Vector2& lpolar) const; 0199 0200 /// Special method for Disc surface : local<->local transformations polar <-> 0201 /// cartesian 0202 /// 0203 /// @param lcart is local 2D position in cartesian coordinates 0204 /// 0205 /// @return value is a local position in polar coordinates 0206 Vector2 localCartesianToPolar(const Vector2& lcart) const; 0207 0208 /// Special method for DiscSurface : local<->local transformations polar <-> 0209 /// cartesian 0210 /// 0211 /// @param locpol is a local position in polar coordinates 0212 /// 0213 /// @return values is local 2D position in cartesian coordinates 0214 Vector2 localPolarToLocalCartesian(const Vector2& locpol) const; 0215 0216 /// Special method for DiscSurface : local<->global transformation when 0217 /// provided cartesian coordinates 0218 /// 0219 /// @param gctx The current geometry context object, e.g. alignment 0220 /// @param lposition is local 2D position in cartesian coordinates 0221 /// 0222 /// @return value is a global cartesian 3D position 0223 Vector3 localCartesianToGlobal(const GeometryContext& gctx, 0224 const Vector2& lposition) const; 0225 0226 /// Special method for DiscSurface : global<->local from cartesian coordinates 0227 /// 0228 /// @param gctx The current geometry context object, e.g. alignment 0229 /// @param position is a global cartesian 3D position 0230 /// @param tol The absolute tolerance parameter 0231 /// 0232 /// @return value is a local polar 0233 Vector2 globalToLocalCartesian(const GeometryContext& gctx, 0234 const Vector3& position, 0235 double tol = 0.) const; 0236 0237 /// Calculate the jacobian from local to global which the surface knows best, 0238 /// hence the calculation is done here. 0239 /// 0240 /// @param gctx The current geometry context object, e.g. alignment 0241 /// @param position global 3D position 0242 /// @param direction global 3D momentum direction 0243 /// 0244 /// @return Jacobian from local to global 0245 BoundToFreeMatrix boundToFreeJacobian(const GeometryContext& gctx, 0246 const Vector3& position, 0247 const Vector3& direction) const final; 0248 0249 /// Calculate the jacobian from global to local which the surface knows best, 0250 /// hence the calculation is done here. 0251 /// 0252 /// @param gctx The current geometry context object, e.g. alignment 0253 /// @param position global 3D position 0254 /// @param direction global 3D momentum direction 0255 /// 0256 /// @return Jacobian from global to local 0257 FreeToBoundMatrix freeToBoundJacobian(const GeometryContext& gctx, 0258 const Vector3& position, 0259 const Vector3& direction) const final; 0260 0261 /// Path correction due to incident of the track 0262 /// 0263 /// @param gctx The current geometry context object, e.g. alignment 0264 /// @param position The global position as a starting point 0265 /// @param direction The global momentum direction at the starting point 0266 /// @return The correction factor due to incident 0267 double pathCorrection(const GeometryContext& gctx, const Vector3& position, 0268 const Vector3& direction) const final; 0269 0270 /// @brief Straight line intersection schema 0271 /// 0272 /// @param gctx The current geometry context object, e.g. alignment 0273 /// @param position The global position as a starting point 0274 /// @param direction The global direction at the starting point 0275 /// @note expected to be normalized (no checking) 0276 /// @param boundaryTolerance The boundary check prescription 0277 /// @param tolerance the tolerance used for the intersection 0278 /// 0279 /// <b>Mathematical motivation:</b> 0280 /// 0281 /// the equation of the plane is given by: <br> 0282 /// @f$ \vec n \cdot \vec x = \vec n \cdot \vec p,@f$ <br> 0283 /// where @f$ \vec n = (n_{x}, n_{y}, n_{z})@f$ denotes the normal vector of 0284 /// the plane, @f$ \vec p = (p_{x}, p_{y}, p_{z})@f$ one specific point on 0285 /// the plane and @f$ \vec x = (x,y,z) @f$ all possible points 0286 /// on the plane.<br> 0287 /// Given a line with:<br> 0288 /// @f$ \vec l(u) = \vec l_{1} + u \cdot \vec v @f$, <br> 0289 /// the solution for @f$ u @f$ can be written: 0290 /// @f$ u = \frac{\vec n (\vec p - \vec l_{1})}{\vec n \vec v}@f$ <br> 0291 /// If the denominator is 0 then the line lies: 0292 /// - either in the plane 0293 /// - perpendicular to the normal of the plane 0294 /// 0295 /// @return The @c SurfaceMultiIntersection object 0296 SurfaceMultiIntersection intersect( 0297 const GeometryContext& gctx, const Vector3& position, 0298 const Vector3& direction, 0299 const BoundaryTolerance& boundaryTolerance = 0300 BoundaryTolerance::Infinite(), 0301 double tolerance = s_onSurfaceTolerance) const final; 0302 0303 /// Return properly formatted class name for screen output 0304 std::string name() const override; 0305 0306 /// Return a Polyhedron for the surfaces 0307 /// 0308 /// @param gctx The current geometry context object, e.g. alignment 0309 /// @param quarterSegments Number of segments used to describe the 0310 /// quarter of a full circle 0311 /// 0312 /// @return A list of vertices and a face/facett description of it 0313 Polyhedron polyhedronRepresentation( 0314 const GeometryContext& gctx, unsigned int quarterSegments) const override; 0315 0316 /// Calculate the derivative of bound track parameters local position w.r.t. 0317 /// position in local 3D Cartesian coordinates 0318 /// 0319 /// @param gctx The current geometry context object, e.g. alignment 0320 /// @param position The position of the parameters in global 0321 /// 0322 /// @return Derivative of bound local position w.r.t. position in local 3D 0323 /// cartesian coordinates 0324 ActsMatrix<2, 3> localCartesianToBoundLocalDerivative( 0325 const GeometryContext& gctx, const Vector3& position) const final; 0326 0327 /// Merge two disc surfaces into a single one. 0328 /// @image html Disc_Merging.svg 0329 /// @note The surfaces need to be *compatible*, i.e. have disc bounds 0330 /// that align 0331 /// @param other The other disc surface to merge with 0332 /// @param direction The binning direction: either @c AxisR or @c AxisPhi 0333 /// @param externalRotation If true, any phi rotation is done in the transform 0334 /// @param logger The logger to use 0335 /// @return The merged disc surface and a boolean indicating if surfaces are reversed 0336 /// @note The returned boolean is `false` if `this` is *left* or 0337 /// *counter-clockwise* of @p other, and `true` if not. 0338 std::pair<std::shared_ptr<DiscSurface>, bool> mergedWith( 0339 const DiscSurface& other, AxisDirection direction, bool externalRotation, 0340 const Logger& logger = getDummyLogger()) const; 0341 0342 protected: 0343 std::shared_ptr<const DiscBounds> m_bounds; ///< bounds (shared) 0344 }; 0345 0346 static_assert(RegularSurfaceConcept<DiscSurface>, 0347 "DiscSurface does not fulfill RegularSurfaceConcept"); 0348 0349 } // namespace Acts
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |