Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 09:11:03

0001 // This file is part of the ACTS project.
0002 //
0003 // Copyright (C) 2016 CERN for the benefit of the ACTS project
0004 //
0005 // This Source Code Form is subject to the terms of the Mozilla Public
0006 // License, v. 2.0. If a copy of the MPL was not distributed with this
0007 // file, You can obtain one at https://mozilla.org/MPL/2.0/.
0008 
0009 #pragma once
0010 
0011 #include "Acts/Definitions/Algebra.hpp"
0012 #include "Acts/Definitions/Tolerance.hpp"
0013 #include "Acts/Definitions/TrackParametrization.hpp"
0014 #include "Acts/Geometry/GeometryContext.hpp"
0015 #include "Acts/Geometry/Polyhedron.hpp"
0016 #include "Acts/Surfaces/BoundaryTolerance.hpp"
0017 #include "Acts/Surfaces/DiscBounds.hpp"
0018 #include "Acts/Surfaces/RegularSurface.hpp"
0019 #include "Acts/Surfaces/Surface.hpp"
0020 #include "Acts/Surfaces/SurfaceConcept.hpp"
0021 #include "Acts/Utilities/AxisDefinitions.hpp"
0022 #include "Acts/Utilities/Result.hpp"
0023 
0024 #include <memory>
0025 #include <numbers>
0026 #include <string>
0027 
0028 namespace Acts {
0029 
0030 class DetectorElementBase;
0031 class DiscBounds;
0032 class SurfaceBounds;
0033 
0034 /// @class DiscSurface
0035 ///
0036 /// Class for a disc surface (or a segment thereof)
0037 ///
0038 /// The DiscSurface is defined by the local polar coordinates @f$ (r,phi) @f$.
0039 ///
0040 /// The surface transform positions the disc such that the origin
0041 /// is at @f$ r=0 @f$, independent of the provided \c DiscBounds.
0042 /// The normal vector of the disc (i.e., the local @f$z@f$-axis) is given by
0043 /// @f$ \vec e_{z} = \vec e_{r} \times\vec e_{phi} @f$.
0044 ///
0045 /// The disc surface The only surface type for which the
0046 /// covariance matrix is NOT given in the reference frame.
0047 /// A conversion from polar to cartesian coordinates needs
0048 /// to happen to transfer the local coordinates onto the
0049 /// cartesian reference frame coordinates.
0050 ///
0051 /// @image html DiscSurface.png
0052 ///
0053 class DiscSurface : public RegularSurface {
0054   friend class Surface;
0055 
0056  protected:
0057   /// Constructor for Discs from Transform3, \f$ r_{min}, r_{max} \f$
0058   ///
0059   /// @param transform is transform that places the disc in the global 3D space
0060   /// @param rmin The inner radius of the disc surface
0061   /// @param rmax The outer radius of the disc surface
0062   /// @param hphisec The opening angle of the disc surface and is optional
0063   ///        the default is a full disc
0064   DiscSurface(const Transform3& transform, double rmin, double rmax,
0065               double hphisec = std::numbers::pi);
0066 
0067   /// Constructor for Discs from Transform3, \f$ r_{min}, r_{max}, hx_{min},
0068   /// hx_{max} \f$
0069   /// This is n this case you have DiscTrapezoidBounds
0070   ///
0071   /// @param transform is transform that places the disc in the global 3D space
0072   /// @param minhalfx The half length in x at minimal r
0073   /// @param maxhalfx The half length in x at maximal r
0074   /// @param minR The outer radius of the disc surface
0075   /// @param maxR The inner radius of the disc surface
0076   /// @param avephi The position in phi (default is 0.)
0077   /// @param stereo The optional stereo angle
0078   DiscSurface(const Transform3& transform, double minhalfx, double maxhalfx,
0079               double minR, double maxR, double avephi = 0., double stereo = 0.);
0080 
0081   /// Constructor for Discs from Transform3 and shared DiscBounds
0082   ///
0083   /// @param transform The transform that positions the disc in global 3D
0084   /// @param dbounds The disc bounds describing the surface coverage
0085   DiscSurface(const Transform3& transform,
0086               std::shared_ptr<const DiscBounds> dbounds = nullptr);
0087 
0088   /// Constructor from DetectorElementBase : Element proxy
0089   ///
0090   /// @param dbounds The disc bounds describing the surface coverage
0091   /// @param detelement The detector element represented by this surface
0092   DiscSurface(std::shared_ptr<const DiscBounds> dbounds,
0093               const DetectorElementBase& detelement);
0094 
0095   /// Copy Constructor
0096   ///
0097   /// @param other The source surface for the copy
0098   DiscSurface(const DiscSurface& other);
0099 
0100   /// Copy constructor - with shift
0101   ///
0102   /// @param gctx The current geometry context object, e.g. alignment
0103   /// @param other is the source cone surface
0104   /// @param shift is the additional transform applied after copying
0105   DiscSurface(const GeometryContext& gctx, const DiscSurface& other,
0106               const Transform3& shift);
0107 
0108  public:
0109   /// Assignment operator
0110   ///
0111   /// @param other The source sourface for the assignment
0112   DiscSurface& operator=(const DiscSurface& other);
0113 
0114   /// Return the surface type
0115   SurfaceType type() const override;
0116 
0117   // User overloads from `RegularSurface`
0118   using RegularSurface::globalToLocal;
0119   using RegularSurface::localToGlobal;
0120   using RegularSurface::normal;
0121 
0122   /// Normal vector return
0123   ///
0124   /// @param gctx The current geometry context object, e.g. alignment
0125   /// @param lposition The local position is ignored
0126   ///
0127   /// @return a Vector3 by value
0128   Vector3 normal(const GeometryContext& gctx,
0129                  const Vector2& lposition) const final;
0130 
0131   /// Get the normal vector of this surface at a given global position
0132   /// @note The @p position is required to be on-surface.
0133   /// @param gctx The current geometry context object, e.g. alignment
0134   /// @param position is the global positiono (for @ref DiscSurface this is ignored)
0135   /// @return The normal vector
0136   Vector3 normal(const GeometryContext& gctx,
0137                  const Vector3& position) const final;
0138 
0139   /// Get the normal vector, independent of the location
0140   /// @param gctx The current geometry context object, e.g. alignment
0141   /// @return The normal vector
0142   Vector3 normal(const GeometryContext& gctx) const;
0143 
0144   /// A reference position for a given axis direction
0145   ///
0146   /// @param gctx The current geometry context object, e.g. alignment
0147   /// @param aDir The axis direction for the reference position request
0148   /// @return position that can beused for this binning
0149   Vector3 referencePosition(const GeometryContext& gctx,
0150                             AxisDirection aDir) const final;
0151 
0152   /// A reference position value for a given axis direction
0153   ///
0154   /// @param gctx The current geometry context object, e.g. alignment
0155   /// @param aDir the value generated for the reference position
0156   ///
0157   /// @note This calls the parent method except for AxisR
0158   ///
0159   /// @return float to be used for the binning schema
0160   double referencePositionValue(const GeometryContext& gctx,
0161                                 AxisDirection aDir) const final;
0162 
0163   /// This method returns the bounds by reference
0164   const SurfaceBounds& bounds() const final;
0165 
0166   /// Local to global transformation
0167   /// For planar surfaces the momentum direction is ignored in the local to
0168   /// global transformation
0169   ///
0170   /// @param gctx The current geometry context object, e.g. alignment
0171   /// @param lposition local 2D position in specialized surface frame
0172   ///
0173   /// @return global position by value
0174   Vector3 localToGlobal(const GeometryContext& gctx,
0175                         const Vector2& lposition) const final;
0176 
0177   /// Global to local transformation
0178   /// @note the direction is ignored for Disc surfaces in this calculateion
0179   ///
0180   /// @param gctx The current geometry context object, e.g. alignment
0181   /// @param position global 3D position - considered to be on surface but not
0182   /// inside bounds (check is done)
0183   /// @param tolerance optional tolerance within which a point is considered
0184   /// valid on surface
0185   ///
0186   /// @return a Result<Vector2> which can be !ok() if the operation fails
0187   Result<Vector2> globalToLocal(
0188       const GeometryContext& gctx, const Vector3& position,
0189       double tolerance = s_onSurfaceTolerance) const final;
0190 
0191   /// Special method for DiscSurface : local<->local transformations polar <->
0192   /// cartesian
0193   ///
0194   /// @param lpolar is a local position in polar coordinates
0195   ///
0196   /// @return values is local 2D position in cartesian coordinates  @todo check
0197   Vector2 localPolarToCartesian(const Vector2& lpolar) const;
0198 
0199   /// Special method for Disc surface : local<->local transformations polar <->
0200   /// cartesian
0201   ///
0202   /// @param lcart is local 2D position in cartesian coordinates
0203   ///
0204   /// @return value is a local position in polar coordinates
0205   Vector2 localCartesianToPolar(const Vector2& lcart) const;
0206 
0207   /// Special method for DiscSurface : local<->local transformations polar <->
0208   /// cartesian
0209   ///
0210   /// @param locpol is a local position in polar coordinates
0211   ///
0212   /// @return values is local 2D position in cartesian coordinates
0213   Vector2 localPolarToLocalCartesian(const Vector2& locpol) const;
0214 
0215   /// Special method for DiscSurface :  local<->global transformation when
0216   /// provided cartesian coordinates
0217   ///
0218   /// @param gctx The current geometry context object, e.g. alignment
0219   /// @param lposition is local 2D position in cartesian coordinates
0220   ///
0221   /// @return value is a global cartesian 3D position
0222   Vector3 localCartesianToGlobal(const GeometryContext& gctx,
0223                                  const Vector2& lposition) const;
0224 
0225   /// Special method for DiscSurface : global<->local from cartesian coordinates
0226   ///
0227   /// @param gctx The current geometry context object, e.g. alignment
0228   /// @param position is a global cartesian 3D position
0229   /// @param tol The absolute tolerance parameter
0230   ///
0231   /// @return value is a local polar
0232   Vector2 globalToLocalCartesian(const GeometryContext& gctx,
0233                                  const Vector3& position,
0234                                  double tol = 0.) const;
0235 
0236   /// Calculate the jacobian from local to global which the surface knows best,
0237   /// hence the calculation is done here.
0238   ///
0239   /// @param gctx The current geometry context object, e.g. alignment
0240   /// @param position global 3D position
0241   /// @param direction global 3D momentum direction
0242   ///
0243   /// @return Jacobian from local to global
0244   BoundToFreeMatrix boundToFreeJacobian(const GeometryContext& gctx,
0245                                         const Vector3& position,
0246                                         const Vector3& direction) const final;
0247 
0248   /// Calculate the jacobian from global to local which the surface knows best,
0249   /// hence the calculation is done here.
0250   ///
0251   /// @param gctx The current geometry context object, e.g. alignment
0252   /// @param position global 3D position
0253   /// @param direction global 3D momentum direction
0254   ///
0255   /// @return Jacobian from global to local
0256   FreeToBoundMatrix freeToBoundJacobian(const GeometryContext& gctx,
0257                                         const Vector3& position,
0258                                         const Vector3& direction) const final;
0259 
0260   /// Path correction due to incident of the track
0261   ///
0262   /// @param gctx The current geometry context object, e.g. alignment
0263   /// @param position The global position as a starting point
0264   /// @param direction The global momentum direction at the starting point
0265   /// @return The correction factor due to incident
0266   double pathCorrection(const GeometryContext& gctx, const Vector3& position,
0267                         const Vector3& direction) const final;
0268 
0269   /// @brief Straight line intersection schema
0270   ///
0271   /// @param gctx The current geometry context object, e.g. alignment
0272   /// @param position The global position as a starting point
0273   /// @param direction The global direction at the starting point
0274   ///        @note expected to be normalized (no checking)
0275   /// @param boundaryTolerance The boundary check prescription
0276   /// @param tolerance the tolerance used for the intersection
0277   ///
0278   /// <b>Mathematical motivation:</b>
0279   ///
0280   /// the equation of the plane is given by: <br>
0281   /// @f$ \vec n \cdot \vec x = \vec n \cdot \vec p,@f$ <br>
0282   /// where @f$ \vec n = (n_{x}, n_{y}, n_{z})@f$ denotes the normal vector of
0283   /// the plane, @f$ \vec p = (p_{x}, p_{y}, p_{z})@f$ one specific point on
0284   /// the plane and @f$ \vec x = (x,y,z) @f$ all possible points
0285   /// on the plane.<br>
0286   /// Given a line with:<br>
0287   /// @f$ \vec l(u) = \vec l_{1} + u \cdot \vec v @f$, <br>
0288   /// the solution for @f$ u @f$ can be written:
0289   /// @f$ u = \frac{\vec n (\vec p - \vec l_{1})}{\vec n \vec v}@f$ <br>
0290   /// If the denominator is 0 then the line lies:
0291   /// - either in the plane
0292   /// - perpendicular to the normal of the plane
0293   ///
0294   /// @return The @c SurfaceMultiIntersection object
0295   SurfaceMultiIntersection intersect(
0296       const GeometryContext& gctx, const Vector3& position,
0297       const Vector3& direction,
0298       const BoundaryTolerance& boundaryTolerance =
0299           BoundaryTolerance::Infinite(),
0300       double tolerance = s_onSurfaceTolerance) const final;
0301 
0302   /// Return properly formatted class name for screen output
0303   std::string name() const override;
0304 
0305   /// Return a Polyhedron for the surfaces
0306   ///
0307   /// @param gctx The current geometry context object, e.g. alignment
0308   /// @param quarterSegments Number of segments used to describe the
0309   /// quarter of a full circle
0310   ///
0311   /// @return A list of vertices and a face/facett description of it
0312   Polyhedron polyhedronRepresentation(
0313       const GeometryContext& gctx, unsigned int quarterSegments) const override;
0314 
0315   /// Calculate the derivative of bound track parameters local position w.r.t.
0316   /// position in local 3D Cartesian coordinates
0317   ///
0318   /// @param gctx The current geometry context object, e.g. alignment
0319   /// @param position The position of the parameters in global
0320   ///
0321   /// @return Derivative of bound local position w.r.t. position in local 3D
0322   /// cartesian coordinates
0323   ActsMatrix<2, 3> localCartesianToBoundLocalDerivative(
0324       const GeometryContext& gctx, const Vector3& position) const final;
0325 
0326   /// Merge two disc surfaces into a single one.
0327   /// @image html Disc_Merging.svg
0328   /// @note The surfaces need to be *compatible*, i.e. have disc bounds
0329   ///       that align
0330   /// @param other The other disc surface to merge with
0331   /// @param direction The binning direction: either @c AxisR or @c AxisPhi
0332   /// @param externalRotation If true, any phi rotation is done in the transform
0333   /// @param logger The logger to use
0334   /// @return The merged disc surface and a boolean indicating if surfaces are reversed
0335   /// @note The returned boolean is `false` if `this` is *left* or
0336   ///       *counter-clockwise* of @p other, and `true` if not.
0337   std::pair<std::shared_ptr<DiscSurface>, bool> mergedWith(
0338       const DiscSurface& other, AxisDirection direction, bool externalRotation,
0339       const Logger& logger = getDummyLogger()) const;
0340 
0341  protected:
0342   std::shared_ptr<const DiscBounds> m_bounds;  ///< bounds (shared)
0343 };
0344 
0345 static_assert(RegularSurfaceConcept<DiscSurface>,
0346               "DiscSurface does not fulfill RegularSurfaceConcept");
0347 
0348 }  // namespace Acts