![]() |
|
|||
File indexing completed on 2025-06-30 07:51:49
0001 // This file is part of the ACTS project. 0002 // 0003 // Copyright (C) 2016 CERN for the benefit of the ACTS project 0004 // 0005 // This Source Code Form is subject to the terms of the Mozilla Public 0006 // License, v. 2.0. If a copy of the MPL was not distributed with this 0007 // file, You can obtain one at https://mozilla.org/MPL/2.0/. 0008 0009 #pragma once 0010 0011 // Workaround for building on clang+libstdc++ 0012 #include "Acts/Utilities/detail/ReferenceWrapperAnyCompat.hpp" 0013 0014 #include "Acts/Definitions/Algebra.hpp" 0015 #include "Acts/EventData/TrackParameters.hpp" 0016 #include "Acts/EventData/detail/CorrectedTransformationFreeToBound.hpp" 0017 #include "Acts/MagneticField/MagneticFieldProvider.hpp" 0018 #include "Acts/Propagator/ConstrainedStep.hpp" 0019 #include "Acts/Propagator/EigenStepperDefaultExtension.hpp" 0020 #include "Acts/Propagator/PropagatorTraits.hpp" 0021 #include "Acts/Propagator/StepperOptions.hpp" 0022 #include "Acts/Propagator/StepperStatistics.hpp" 0023 #include "Acts/Propagator/detail/SteppingHelper.hpp" 0024 #include "Acts/Surfaces/Surface.hpp" 0025 #include "Acts/Utilities/Intersection.hpp" 0026 #include "Acts/Utilities/Result.hpp" 0027 0028 #include <type_traits> 0029 0030 namespace Acts { 0031 0032 class IVolumeMaterial; 0033 0034 /// @brief Runge-Kutta-Nystroem stepper based on Eigen implementation 0035 /// for the following ODE: 0036 /// 0037 /// r = (x,y,z) ... global position 0038 /// T = (Ax,Ay,Az) ... momentum direction (normalized) 0039 /// 0040 /// dr/ds = T 0041 /// dT/ds = q/p * (T x B) 0042 /// 0043 /// with s being the arc length of the track, q the charge of the particle, 0044 /// p the momentum magnitude and B the magnetic field 0045 /// 0046 template <typename extension_t = EigenStepperDefaultExtension> 0047 class EigenStepper { 0048 public: 0049 /// Jacobian, Covariance and State definitions 0050 using Jacobian = BoundMatrix; 0051 using Covariance = BoundSquareMatrix; 0052 using BoundState = std::tuple<BoundTrackParameters, Jacobian, double>; 0053 0054 struct Config { 0055 std::shared_ptr<const MagneticFieldProvider> bField; 0056 }; 0057 0058 struct Options : public StepperPlainOptions { 0059 Options(const GeometryContext& gctx, const MagneticFieldContext& mctx) 0060 : StepperPlainOptions(gctx, mctx) {} 0061 0062 void setPlainOptions(const StepperPlainOptions& options) { 0063 static_cast<StepperPlainOptions&>(*this) = options; 0064 } 0065 }; 0066 0067 /// @brief State for track parameter propagation 0068 /// 0069 /// It contains the stepping information and is provided thread local 0070 /// by the propagator 0071 struct State { 0072 /// Constructor from the initial bound track parameters 0073 /// 0074 /// @param [in] optionsIn is the options object for the stepper 0075 /// @param [in] fieldCacheIn is the cache object for the magnetic field 0076 /// 0077 /// @note the covariance matrix is copied when needed 0078 State(const Options& optionsIn, MagneticFieldProvider::Cache fieldCacheIn) 0079 : options(optionsIn), fieldCache(std::move(fieldCacheIn)) {} 0080 0081 Options options; 0082 0083 /// Internal free vector parameters 0084 FreeVector pars = FreeVector::Zero(); 0085 0086 /// Particle hypothesis 0087 ParticleHypothesis particleHypothesis = ParticleHypothesis::pion(); 0088 0089 /// Covariance matrix (and indicator) 0090 /// associated with the initial error on track parameters 0091 bool covTransport = false; 0092 Covariance cov = Covariance::Zero(); 0093 0094 /// The full jacobian of the transport entire transport 0095 Jacobian jacobian = Jacobian::Identity(); 0096 0097 /// Jacobian from local to the global frame 0098 BoundToFreeMatrix jacToGlobal = BoundToFreeMatrix::Zero(); 0099 0100 /// Pure transport jacobian part from runge kutta integration 0101 FreeMatrix jacTransport = FreeMatrix::Identity(); 0102 0103 /// The propagation derivative 0104 FreeVector derivative = FreeVector::Zero(); 0105 0106 /// Accummulated path length state 0107 double pathAccumulated = 0.; 0108 0109 /// Total number of performed steps 0110 std::size_t nSteps = 0; 0111 0112 /// Totoal number of attempted steps 0113 std::size_t nStepTrials = 0; 0114 0115 /// Adaptive step size of the runge-kutta integration 0116 ConstrainedStep stepSize; 0117 0118 /// Last performed step (for overstep limit calculation) 0119 double previousStepSize = 0.; 0120 0121 /// This caches the current magnetic field cell and stays 0122 /// (and interpolates) within it as long as this is valid. 0123 /// See step() code for details. 0124 MagneticFieldProvider::Cache fieldCache; 0125 0126 /// Algorithmic extension 0127 extension_t extension; 0128 0129 /// @brief Storage of magnetic field and the sub steps during a RKN4 step 0130 struct { 0131 /// Magnetic field evaulations 0132 Vector3 B_first, B_middle, B_last; 0133 /// k_i of the RKN4 algorithm 0134 Vector3 k1, k2, k3, k4; 0135 /// k_i elements of the momenta 0136 std::array<double, 4> kQoP{}; 0137 } stepData; 0138 0139 /// Statistics of the stepper 0140 StepperStatistics statistics; 0141 }; 0142 0143 /// Constructor requires knowledge of the detector's magnetic field 0144 /// @param bField The magnetic field provider 0145 explicit EigenStepper(std::shared_ptr<const MagneticFieldProvider> bField); 0146 0147 /// @brief Constructor with configuration 0148 /// 0149 /// @param [in] config The configuration of the stepper 0150 explicit EigenStepper(const Config& config) : m_bField(config.bField) {} 0151 0152 State makeState(const Options& options) const; 0153 0154 void initialize(State& state, const BoundTrackParameters& par) const; 0155 0156 void initialize(State& state, const BoundVector& boundParams, 0157 const std::optional<BoundMatrix>& cov, 0158 ParticleHypothesis particleHypothesis, 0159 const Surface& surface) const; 0160 0161 /// Get the field for the stepping, it checks first if the access is still 0162 /// within the Cell, and updates the cell if necessary. 0163 /// 0164 /// @param [in,out] state is the propagation state associated with the track 0165 /// the magnetic field cell is used (and potentially updated) 0166 /// @param [in] pos is the field position 0167 Result<Vector3> getField(State& state, const Vector3& pos) const { 0168 // get the field from the cell 0169 return m_bField->getField(pos, state.fieldCache); 0170 } 0171 0172 /// Global particle position accessor 0173 /// 0174 /// @param state [in] The stepping state (thread-local cache) 0175 Vector3 position(const State& state) const { 0176 return state.pars.template segment<3>(eFreePos0); 0177 } 0178 0179 /// Momentum direction accessor 0180 /// 0181 /// @param state [in] The stepping state (thread-local cache) 0182 Vector3 direction(const State& state) const { 0183 return state.pars.template segment<3>(eFreeDir0); 0184 } 0185 0186 /// QoP direction accessor 0187 /// 0188 /// @param state [in] The stepping state (thread-local cache) 0189 double qOverP(const State& state) const { return state.pars[eFreeQOverP]; } 0190 0191 /// Absolute momentum accessor 0192 /// 0193 /// @param state [in] The stepping state (thread-local cache) 0194 double absoluteMomentum(const State& state) const { 0195 return particleHypothesis(state).extractMomentum(qOverP(state)); 0196 } 0197 0198 /// Momentum accessor 0199 /// 0200 /// @param state [in] The stepping state (thread-local cache) 0201 Vector3 momentum(const State& state) const { 0202 return absoluteMomentum(state) * direction(state); 0203 } 0204 0205 /// Charge access 0206 /// 0207 /// @param state [in] The stepping state (thread-local cache) 0208 double charge(const State& state) const { 0209 return particleHypothesis(state).extractCharge(qOverP(state)); 0210 } 0211 0212 /// Particle hypothesis 0213 /// 0214 /// @param state [in] The stepping state (thread-local cache) 0215 const ParticleHypothesis& particleHypothesis(const State& state) const { 0216 return state.particleHypothesis; 0217 } 0218 0219 /// Time access 0220 /// 0221 /// @param state [in] The stepping state (thread-local cache) 0222 double time(const State& state) const { return state.pars[eFreeTime]; } 0223 0224 /// Update surface status 0225 /// 0226 /// It checks the status to the reference surface & updates 0227 /// the step size accordingly 0228 /// 0229 /// @param [in,out] state The stepping state (thread-local cache) 0230 /// @param [in] surface The surface provided 0231 /// @param [in] index The surface intersection index 0232 /// @param [in] propDir The propagation direction 0233 /// @param [in] boundaryTolerance The boundary check for this status update 0234 /// @param [in] surfaceTolerance Surface tolerance used for intersection 0235 /// @param [in] stype The step size type to be set 0236 /// @param [in] logger A @c Logger instance 0237 IntersectionStatus updateSurfaceStatus( 0238 State& state, const Surface& surface, std::uint8_t index, 0239 Direction propDir, const BoundaryTolerance& boundaryTolerance, 0240 double surfaceTolerance, ConstrainedStep::Type stype, 0241 const Logger& logger = getDummyLogger()) const { 0242 return detail::updateSingleSurfaceStatus<EigenStepper>( 0243 *this, state, surface, index, propDir, boundaryTolerance, 0244 surfaceTolerance, stype, logger); 0245 } 0246 0247 /// Update step size 0248 /// 0249 /// This method intersects the provided surface and update the navigation 0250 /// step estimation accordingly (hence it changes the state). It also 0251 /// returns the status of the intersection to trigger onSurface in case 0252 /// the surface is reached. 0253 /// 0254 /// @param state [in,out] The stepping state (thread-local cache) 0255 /// @param oIntersection [in] The ObjectIntersection to layer, boundary, etc 0256 /// @param direction [in] The propagation direction 0257 /// @param stype [in] The step size type to be set 0258 template <typename object_intersection_t> 0259 void updateStepSize(State& state, const object_intersection_t& oIntersection, 0260 Direction direction, ConstrainedStep::Type stype) const { 0261 (void)direction; 0262 double stepSize = oIntersection.pathLength(); 0263 updateStepSize(state, stepSize, stype); 0264 } 0265 0266 /// Update step size - explicitly with a double 0267 /// 0268 /// @param state [in,out] The stepping state (thread-local cache) 0269 /// @param stepSize [in] The step size value 0270 /// @param stype [in] The step size type to be set 0271 void updateStepSize(State& state, double stepSize, 0272 ConstrainedStep::Type stype) const { 0273 state.previousStepSize = state.stepSize.value(); 0274 state.stepSize.update(stepSize, stype); 0275 } 0276 0277 /// Get the step size 0278 /// 0279 /// @param state [in] The stepping state (thread-local cache) 0280 /// @param stype [in] The step size type to be returned 0281 double getStepSize(const State& state, ConstrainedStep::Type stype) const { 0282 return state.stepSize.value(stype); 0283 } 0284 0285 /// Release the Step size 0286 /// 0287 /// @param state [in,out] The stepping state (thread-local cache) 0288 /// @param [in] stype The step size type to be released 0289 void releaseStepSize(State& state, ConstrainedStep::Type stype) const { 0290 state.stepSize.release(stype); 0291 } 0292 0293 /// Output the Step Size - single component 0294 /// 0295 /// @param state [in,out] The stepping state (thread-local cache) 0296 std::string outputStepSize(const State& state) const { 0297 return state.stepSize.toString(); 0298 } 0299 0300 /// Create and return the bound state at the current position 0301 /// 0302 /// @brief This transports (if necessary) the covariance 0303 /// to the surface and creates a bound state. It does not check 0304 /// if the transported state is at the surface, this needs to 0305 /// be guaranteed by the propagator 0306 /// 0307 /// @param [in] state State that will be presented as @c BoundState 0308 /// @param [in] surface The surface to which we bind the state 0309 /// @param [in] transportCov Flag steering covariance transport 0310 /// @param [in] freeToBoundCorrection Correction for non-linearity effect during transform from free to bound 0311 /// 0312 /// @return A bound state: 0313 /// - the parameters at the surface 0314 /// - the stepwise jacobian towards it (from last bound) 0315 /// - and the path length (from start - for ordering) 0316 Result<BoundState> boundState( 0317 State& state, const Surface& surface, bool transportCov = true, 0318 const FreeToBoundCorrection& freeToBoundCorrection = 0319 FreeToBoundCorrection(false)) const; 0320 0321 /// @brief If necessary fill additional members needed for curvilinearState 0322 /// 0323 /// Compute path length derivatives in case they have not been computed 0324 /// yet, which is the case if no step has been executed yet. 0325 /// 0326 /// @param [in, out] state The state of the stepper 0327 /// @return true if nothing is missing after this call, false otherwise. 0328 bool prepareCurvilinearState(State& state) const; 0329 0330 /// Create and return a curvilinear state at the current position 0331 /// 0332 /// @brief This transports (if necessary) the covariance 0333 /// to the current position and creates a curvilinear state. 0334 /// 0335 /// @param [in] state State that will be presented as @c CurvilinearState 0336 /// @param [in] transportCov Flag steering covariance transport 0337 /// 0338 /// @return A curvilinear state: 0339 /// - the curvilinear parameters at given position 0340 /// - the stepweise jacobian towards it (from last bound) 0341 /// - and the path length (from start - for ordering) 0342 BoundState curvilinearState(State& state, bool transportCov = true) const; 0343 0344 /// Method to update a stepper state to the some parameters 0345 /// 0346 /// @param [in,out] state State object that will be updated 0347 /// @param [in] freeParams Free parameters that will be written into @p state 0348 /// @param [in] boundParams Corresponding bound parameters used to update jacToGlobal in @p state 0349 /// @param [in] covariance The covariance that will be written into @p state 0350 /// @param [in] surface The surface used to update the jacToGlobal 0351 void update(State& state, const FreeVector& freeParams, 0352 const BoundVector& boundParams, const Covariance& covariance, 0353 const Surface& surface) const; 0354 0355 /// Method to update the stepper state 0356 /// 0357 /// @param [in,out] state State object that will be updated 0358 /// @param [in] uposition the updated position 0359 /// @param [in] udirection the updated direction 0360 /// @param [in] qOverP the updated qOverP value 0361 /// @param [in] time the updated time value 0362 void update(State& state, const Vector3& uposition, const Vector3& udirection, 0363 double qOverP, double time) const; 0364 0365 /// Method for on-demand transport of the covariance 0366 /// to a new curvilinear frame at current position, 0367 /// or direction of the state 0368 /// 0369 /// @param [in,out] state State of the stepper 0370 void transportCovarianceToCurvilinear(State& state) const; 0371 0372 /// Method for on-demand transport of the covariance 0373 /// to a new curvilinear frame at current position, 0374 /// or direction of the state 0375 /// 0376 /// @tparam surface_t the Surface type 0377 /// 0378 /// @param [in,out] state State of the stepper 0379 /// @param [in] surface is the surface to which the covariance is forwarded to 0380 /// @param [in] freeToBoundCorrection Correction for non-linearity effect during transform from free to bound 0381 /// @note no check is done if the position is actually on the surface 0382 void transportCovarianceToBound( 0383 State& state, const Surface& surface, 0384 const FreeToBoundCorrection& freeToBoundCorrection = 0385 FreeToBoundCorrection(false)) const; 0386 0387 /// Perform a Runge-Kutta track parameter propagation step 0388 /// 0389 /// @param [in,out] state State of the stepper 0390 /// @param propDir is the direction of propagation 0391 /// @param material is the optional volume material we are stepping through. 0392 // This is simply ignored if `nullptr`. 0393 /// @return the result of the step 0394 /// 0395 /// @note The state contains the desired step size. It can be negative during 0396 /// backwards track propagation, and since we're using an adaptive 0397 /// algorithm, it can be modified by the stepper class during 0398 /// propagation. 0399 Result<double> step(State& state, Direction propDir, 0400 const IVolumeMaterial* material) const; 0401 0402 /// Method that reset the Jacobian to the Identity for when no bound state are 0403 /// available 0404 /// 0405 /// @param [in,out] state State of the stepper 0406 void setIdentityJacobian(State& state) const; 0407 0408 protected: 0409 /// Magnetic field inside of the detector 0410 std::shared_ptr<const MagneticFieldProvider> m_bField; 0411 }; 0412 0413 template <> 0414 struct SupportsBoundParameters<EigenStepper<>> : public std::true_type {}; 0415 0416 } // namespace Acts 0417 0418 #include "Acts/Propagator/EigenStepper.ipp"
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |