Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-07-04 07:52:05

0001 // This file is part of the ACTS project.
0002 //
0003 // Copyright (C) 2016 CERN for the benefit of the ACTS project
0004 //
0005 // This Source Code Form is subject to the terms of the Mozilla Public
0006 // License, v. 2.0. If a copy of the MPL was not distributed with this
0007 // file, You can obtain one at https://mozilla.org/MPL/2.0/.
0008 
0009 #pragma once
0010 
0011 #include <algorithm>
0012 #include <cassert>
0013 #include <cstdint>
0014 #include <limits>
0015 #include <ostream>
0016 #include <vector>
0017 
0018 namespace Acts {
0019 
0020 /// Memory-efficient storage of the relative fraction of an element.
0021 ///
0022 /// This can be used to define materials that are compounds of multiple elements
0023 /// with varying fractions. The element is identified by its atomic number
0024 /// stored as a single byte (allows up to 256 elements; more than we need).
0025 /// Its fraction is also stored as a single byte with values between 0 and
0026 /// 255. This gives an accuracy of 1/256 ~ 0.5 %.
0027 ///
0028 /// The element fraction allows you to store element composition in merged
0029 /// materials with a large number of bins. Depending on the
0030 /// detector and the description granularity this can be a lot of information
0031 /// and thus requires the reduced memory footprint. This is really only needed
0032 /// for nuclear interaction in the fast simulation where the reduced fractional
0033 /// accuracy is not a problem. The fractional accuracy should be much better
0034 /// than the parametrization uncertainty for hadronic interactions.
0035 class ElementFraction {
0036  public:
0037   /// Construct from atomic number and relative fraction.
0038   ///
0039   /// @param e is the atomic number of the element
0040   /// @param f is the relative fraction and must be a value in [0,1]
0041   constexpr ElementFraction(unsigned int e, float f)
0042       : m_element(static_cast<std::uint8_t>(e)),
0043         m_fraction(static_cast<std::uint8_t>(
0044             f * std::numeric_limits<std::uint8_t>::max())) {
0045     assert((0u < e) && ("The atomic number must be positive"));
0046     assert((0.0f <= f) && (f <= 1.0f) && "Relative fraction must be in [0,1]");
0047   }
0048   /// Construct from atomic number and integer weight.
0049   ///
0050   /// @param e is the atomic number of the element
0051   /// @param w is the integer weight and must be a value in [0,256)
0052   constexpr explicit ElementFraction(unsigned int e, unsigned int w)
0053       : m_element(static_cast<std::uint8_t>(e)),
0054         m_fraction(static_cast<std::uint8_t>(w)) {
0055     assert((0u < e) && ("The atomic number must be positive"));
0056     assert((w < 256u) && "Integer weight must be in [0,256)");
0057   }
0058 
0059   /// Must always be created with valid data.
0060   ElementFraction() = delete;
0061   ElementFraction(ElementFraction&&) = default;
0062   ElementFraction(const ElementFraction&) = default;
0063   ~ElementFraction() = default;
0064   ElementFraction& operator=(ElementFraction&&) = default;
0065   ElementFraction& operator=(const ElementFraction&) = default;
0066 
0067   /// The element atomic number.
0068   constexpr std::uint8_t element() const { return m_element; }
0069   /// The relative fraction of this element.
0070   constexpr float fraction() const {
0071     return static_cast<float>(m_fraction) /
0072            std::numeric_limits<std::uint8_t>::max();
0073   }
0074 
0075  private:
0076   // element atomic number
0077   std::uint8_t m_element;
0078   // element fraction in the compound scaled to the [0,256) range.
0079   std::uint8_t m_fraction;
0080 
0081   friend constexpr bool operator==(ElementFraction lhs, ElementFraction rhs) {
0082     return (lhs.m_fraction == rhs.m_fraction) &&
0083            (lhs.m_element == rhs.m_element);
0084   }
0085   /// Sort by fraction for fastest access to the most probable element.
0086   friend constexpr bool operator<(ElementFraction lhs, ElementFraction rhs) {
0087     return lhs.m_fraction < rhs.m_fraction;
0088   }
0089   friend class MaterialComposition;
0090 
0091   /// Stream operator for ElementFraction
0092   friend std::ostream& operator<<(std::ostream& os, const ElementFraction& ef) {
0093     os << "ElementFraction(Z=" << static_cast<unsigned int>(ef.m_element)
0094        << ", f=" << ef.fraction() << ")";
0095     return os;
0096   }
0097 };
0098 
0099 /// Material composed from multiple elements with varying factions.
0100 ///
0101 /// @see ElementFraction for details.
0102 class MaterialComposition {
0103  public:
0104   /// Construct an empty composition corresponding to vacuum.
0105   MaterialComposition() = default;
0106   /// Constructor from element fractions.
0107   ///
0108   /// Rescales the fractions so they all add up to unity within the accuracy.
0109   explicit MaterialComposition(std::vector<ElementFraction> elements)
0110       : m_elements(std::move(elements)) {
0111     std::ranges::sort(m_elements, std::less<ElementFraction>{});
0112     // compute the total weight first
0113     unsigned total = 0u;
0114     for (const auto& element : m_elements) {
0115       total += element.m_fraction;
0116     }
0117     // compute scale factor into the [0, 256) range
0118     float scale = float{std::numeric_limits<std::uint8_t>::max()} / total;
0119     for (auto& element : m_elements) {
0120       element.m_fraction =
0121           static_cast<std::uint8_t>(element.m_fraction * scale);
0122     }
0123   }
0124 
0125   MaterialComposition(MaterialComposition&&) = default;
0126   MaterialComposition(const MaterialComposition&) = default;
0127   ~MaterialComposition() = default;
0128   MaterialComposition& operator=(MaterialComposition&&) = default;
0129   MaterialComposition& operator=(const MaterialComposition&) = default;
0130 
0131   // Support range-based iteration over contained elements.
0132   auto begin() const { return m_elements.begin(); }
0133   auto end() const { return m_elements.end(); }
0134 
0135   /// Check if the composed material is valid, i.e. it is not vacuum.
0136   explicit operator bool() const { return !m_elements.empty(); }
0137   /// Return the number of elements.
0138   std::size_t size() const { return m_elements.size(); }
0139 
0140  private:
0141   std::vector<ElementFraction> m_elements;
0142 
0143   friend inline bool operator==(const MaterialComposition& lhs,
0144                                 const MaterialComposition& rhs) {
0145     return lhs.m_elements == rhs.m_elements;
0146   }
0147 
0148   /// Stream operator for MaterialComposition
0149   friend std::ostream& operator<<(std::ostream& os,
0150                                   const MaterialComposition& mc) {
0151     os << "MaterialComposition(elements=[";
0152     for (std::size_t i = 0; i < mc.m_elements.size(); ++i) {
0153       if (i > 0) {
0154         os << ", ";
0155       }
0156       os << mc.m_elements[i];
0157     }
0158     os << "])";
0159     return os;
0160   }
0161 };
0162 
0163 }  // namespace Acts