|
||||
File indexing completed on 2025-01-18 09:10:54
0001 // This file is part of the ACTS project. 0002 // 0003 // Copyright (C) 2016 CERN for the benefit of the ACTS project 0004 // 0005 // This Source Code Form is subject to the terms of the Mozilla Public 0006 // License, v. 2.0. If a copy of the MPL was not distributed with this 0007 // file, You can obtain one at https://mozilla.org/MPL/2.0/. 0008 0009 #pragma once 0010 0011 #include <iosfwd> 0012 #include <limits> 0013 0014 #include <Eigen/Dense> 0015 0016 namespace Acts { 0017 0018 /// Material description for interactions with matter. 0019 /// @defgroup Material Material 0020 /// 0021 /// The following parameters are used to specify the material and its 0022 /// interactions with traversing particles: 0023 /// 0024 /// - radiation length X0 (native length units) 0025 /// - nuclear interaction length L0 (native length units) 0026 /// - relative atomic mass Ar (unitless number) 0027 /// - nuclear charge number Z (elementary charge e) 0028 /// - molar density (native amount-of-substance unit / (native length unit)³) 0029 /// 0030 /// The parameters can be effective or average parameters e.g. when a mixture 0031 /// of materials is described. 0032 /// 0033 /// @note Always use the opaque parameters vector to serialize/deserialize the 0034 /// material information. Since the internal storage might be different from 0035 /// the external accessors, this ensures that always the numerically optimal 0036 /// parameters are stored. Use the `ParametersVector` type and do not assume 0037 /// any particular size since we might consider to store more parameters in 0038 /// the future. 0039 class Material { 0040 public: 0041 using ParametersVector = Eigen::Matrix<float, 5, 1>; 0042 0043 // Both mass and molar density are stored as a float and can thus not be 0044 // distinguished by their types. Just changing the last element in the 0045 // previously existing constructor that took five floats as input to represent 0046 // molar density instead of mass density could have lead to significant 0047 // confusion compared to the previous behaviour. To avoid any ambiguity, 0048 // construction from separate material parameters must happen through the 0049 // following named constructors. 0050 0051 /// Construct from material parameters using the molar density. 0052 /// 0053 /// @param x0 is the radiation length 0054 /// @param l0 is the nuclear interaction length 0055 /// @param ar is the relative atomic mass 0056 /// @param z is the nuclear charge number 0057 /// @param molarRho is the molar density 0058 static Material fromMolarDensity(float x0, float l0, float ar, float z, 0059 float molarRho); 0060 /// Construct from material parameters using the mass density. 0061 /// 0062 /// @param x0 is the radiation length 0063 /// @param l0 is the nuclear interaction length 0064 /// @param ar is the relative atomic mass 0065 /// @param z is the nuclear charge number 0066 /// @param massRho is the mass density 0067 /// 0068 /// @warning Due to the choice of native mass units, using the mass density 0069 /// can lead to numerical problems. Typical mass densities lead to 0070 /// computations with values differing by 20+ orders of magnitude. 0071 static Material fromMassDensity(float x0, float l0, float ar, float z, 0072 float massRho); 0073 /// Construct a vacuum representation. 0074 Material() = default; 0075 /// Construct from an encoded parameters vector. 0076 explicit Material(const ParametersVector& parameters); 0077 0078 Material(Material&& mat) = default; 0079 Material(const Material& mat) = default; 0080 ~Material() = default; 0081 Material& operator=(Material&& mat) = default; 0082 Material& operator=(const Material& mat) = default; 0083 0084 /// Check if the material is valid, i.e. it is not vacuum. 0085 bool isValid() const { return 0.0f < m_ar; } 0086 0087 /// Return the radiation length. Infinity in case of vacuum. 0088 constexpr float X0() const { return m_x0; } 0089 /// Return the nuclear interaction length. Infinity in case of vacuum. 0090 constexpr float L0() const { return m_l0; } 0091 /// Return the relative atomic mass. 0092 constexpr float Ar() const { return m_ar; } 0093 /// Return the nuclear charge number. 0094 constexpr float Z() const { return m_z; } 0095 /// Return the molar density. 0096 constexpr float molarDensity() const { return m_molarRho; } 0097 /// Return the molar electron density. 0098 constexpr float molarElectronDensity() const { return m_z * m_molarRho; } 0099 /// Return the mass density. 0100 float massDensity() const; 0101 /// Return the mean electron excitation energy. 0102 float meanExcitationEnergy() const; 0103 0104 /// Encode the properties into an opaque parameters vector. 0105 ParametersVector parameters() const; 0106 0107 private: 0108 float m_x0 = std::numeric_limits<float>::infinity(); 0109 float m_l0 = std::numeric_limits<float>::infinity(); 0110 float m_ar = 0.0f; 0111 float m_z = 0.0f; 0112 float m_molarRho = 0.0f; 0113 0114 /// @brief Check if two materials are exactly equal. 0115 /// 0116 /// This is a strict equality check, i.e. the materials must have identical 0117 /// properties. 0118 /// 0119 /// @param lhs is the left hand side material 0120 /// @param rhs is the right hand side material 0121 /// 0122 /// @return true if the materials are equal 0123 friend constexpr bool operator==(const Material& lhs, const Material& rhs) { 0124 return (lhs.m_x0 == rhs.m_x0) && (lhs.m_l0 == rhs.m_l0) && 0125 (lhs.m_ar == rhs.m_ar) && (lhs.m_z == rhs.m_z) && 0126 (lhs.m_molarRho == rhs.m_molarRho); 0127 } 0128 }; 0129 0130 std::ostream& operator<<(std::ostream& os, const Material& material); 0131 0132 } // namespace Acts
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |