File indexing completed on 2025-01-18 09:15:30
0001
0002
0003
0004 #include <edm4eic/EDM4eicVersion.h>
0005
0006 #if EDM4EIC_VERSION_MAJOR >= 8
0007 #include <algorithm>
0008 #include <cstddef>
0009 #include <fmt/core.h>
0010 #include <gsl/pointers>
0011 #include <iterator>
0012 #include <onnxruntime_c_api.h>
0013 #include <onnxruntime_cxx_api.h>
0014 #include <ostream>
0015 #include <stdexcept>
0016
0017 #include "ONNXInference.h"
0018
0019 namespace eicrecon {
0020
0021 static std::string print_shape(const std::vector<std::int64_t>& v) {
0022 std::stringstream ss("");
0023 for (std::size_t i = 0; i < v.size() - 1; i++) ss << v[i] << " x ";
0024 ss << v[v.size() - 1];
0025 return ss.str();
0026 }
0027
0028 static bool check_shape_consistency(const std::vector<std::int64_t>& shape1, const std::vector<std::int64_t>& shape2) {
0029 if (shape2.size() != shape1.size()) {
0030 return false;
0031 }
0032 for (size_t ix = 0; ix < shape1.size(); ix++) {
0033 if ((shape1[ix] != -1) && (shape2[ix] != -1) && (shape1[ix] != shape2[ix])) {
0034 return false;
0035 }
0036 }
0037 return true;
0038 }
0039
0040 template <typename T>
0041 static Ort::Value iters_to_tensor(
0042 typename std::vector<T>::const_iterator data_begin,
0043 typename std::vector<T>::const_iterator data_end,
0044 std::vector<int64_t>::const_iterator shape_begin,
0045 std::vector<int64_t>::const_iterator shape_end
0046 ) {
0047 Ort::MemoryInfo mem_info =
0048 Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
0049 auto tensor = Ort::Value::CreateTensor<T>(mem_info, const_cast<T*>(&*data_begin), data_end - data_begin, &*shape_begin, shape_end - shape_begin);
0050 return tensor;
0051 }
0052
0053 void ONNXInference::init() {
0054
0055 m_env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, name().data());
0056 Ort::SessionOptions session_options;
0057 session_options.SetInterOpNumThreads(1);
0058 session_options.SetIntraOpNumThreads(1);
0059 try {
0060 m_session = Ort::Session(m_env, m_cfg.modelPath.c_str(), session_options);
0061 Ort::AllocatorWithDefaultOptions allocator;
0062
0063
0064 debug("Input Node Name/Shape:");
0065 for (std::size_t i = 0; i < m_session.GetInputCount(); i++) {
0066 m_input_names.emplace_back(m_session.GetInputNameAllocated(i, allocator).get());
0067 m_input_shapes.emplace_back(m_session.GetInputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape());
0068 debug("\t{} : {}", m_input_names.at(i), print_shape(m_input_shapes.at(i)));
0069 }
0070
0071
0072 debug("Output Node Name/Shape: {}", m_session.GetOutputCount());
0073 for (std::size_t i = 0; i < m_session.GetOutputCount(); i++) {
0074 m_output_names.emplace_back(m_session.GetOutputNameAllocated(i, allocator).get());
0075
0076 if (m_session.GetOutputTypeInfo(i).GetONNXType() != ONNX_TYPE_TENSOR) {
0077 m_output_shapes.emplace_back();
0078 debug("\t{} : not a tensor", m_output_names.at(i));
0079 } else {
0080 m_output_shapes.emplace_back(m_session.GetOutputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape());
0081 debug("\t{} : {}", m_output_names.at(i), print_shape(m_output_shapes.at(i)));
0082 }
0083 }
0084
0085
0086 m_input_names_char.resize(m_input_names.size(), nullptr);
0087 std::transform(std::begin(m_input_names), std::end(m_input_names), std::begin(m_input_names_char),
0088 [&](const std::string& str) { return str.c_str(); });
0089 m_output_names_char.resize(m_output_names.size(), nullptr);
0090 std::transform(std::begin(m_output_names), std::end(m_output_names), std::begin(m_output_names_char),
0091 [&](const std::string& str) { return str.c_str(); });
0092
0093 } catch(const Ort::Exception& exception) {
0094 error("ONNX error {}", exception.what());
0095 throw;
0096 }
0097 }
0098
0099 void ONNXInference::process(
0100 const ONNXInference::Input& input,
0101 const ONNXInference::Output& output) const {
0102
0103 const auto [in_tensors] = input;
0104 auto [out_tensors] = output;
0105
0106
0107 if (in_tensors.size() != m_input_names.size()) {
0108 error("The ONNX model requires {} tensors, whereas {} were provided", m_input_names.size(), in_tensors.size());
0109 throw std::runtime_error(fmt::format("The ONNX model requires {} tensors, whereas {} were provided", m_input_names.size(), in_tensors.size()));
0110 }
0111
0112
0113 std::vector<float> input_tensor_values;
0114 std::vector<Ort::Value> input_tensors;
0115
0116 for (int ix = 0; ix < m_input_names.size(); ix++) {
0117 edm4eic::Tensor in_tensor = in_tensors[ix]->at(0);
0118 if (in_tensor.getElementType() == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT) {
0119 input_tensors.emplace_back(iters_to_tensor<float>(
0120 in_tensor.floatData_begin(),
0121 in_tensor.floatData_end(),
0122 in_tensor.shape_begin(),
0123 in_tensor.shape_end()
0124 ));
0125 } else if (in_tensor.getElementType() == ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64) {
0126 input_tensors.emplace_back(iters_to_tensor<int64_t>(
0127 in_tensor.int64Data_begin(),
0128 in_tensor.int64Data_end(),
0129 in_tensor.shape_begin(),
0130 in_tensor.shape_end()
0131 ));
0132 }
0133
0134 auto input_shape = input_tensors[ix].GetTensorTypeAndShapeInfo().GetShape();
0135 std::vector<std::int64_t> input_expected_shape = m_input_shapes[ix];
0136 if (!check_shape_consistency(input_shape, input_expected_shape)) {
0137 error("Input tensor shape incorrect {} != {}", print_shape(input_shape), print_shape(input_expected_shape));
0138 throw std::runtime_error(fmt::format("Input tensor shape incorrect {} != {}", print_shape(input_shape), print_shape(input_expected_shape)));
0139 }
0140 }
0141
0142
0143 std::vector<Ort::Value> onnx_values;
0144 try {
0145 onnx_values = m_session.Run(Ort::RunOptions{nullptr}, m_input_names_char.data(), input_tensors.data(),
0146 m_input_names_char.size(), m_output_names_char.data(), m_output_names_char.size());
0147 } catch (const Ort::Exception& exception) {
0148 error("Error running model inference: {}", exception.what());
0149 throw;
0150 }
0151
0152 try {
0153 for (size_t ix = 0; ix < onnx_values.size(); ix++) {
0154 Ort::Value &onnx_tensor = onnx_values[ix];
0155 if (!onnx_tensor.IsTensor()) {
0156 error("The output \"{}\" is not a tensor. ONNXType {} is not yet supported. Skipping...",
0157 m_output_names_char[ix],
0158 static_cast<int>(onnx_tensor.GetTypeInfo().GetONNXType()));
0159 continue;
0160 }
0161 auto onnx_tensor_type = onnx_tensor.GetTensorTypeAndShapeInfo();
0162 edm4eic::MutableTensor out_tensor = out_tensors[ix]->create();
0163 out_tensor.setElementType(static_cast<int32_t>(onnx_tensor_type.GetElementType()));
0164 size_t num_values = 1;
0165 for (int64_t dim_size : onnx_tensor_type.GetShape()) {
0166 out_tensor.addToShape(dim_size);
0167 num_values *= dim_size;
0168 }
0169 if (onnx_tensor_type.GetElementType() == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT) {
0170 auto *data = onnx_tensor.GetTensorMutableData<float>();
0171 for (size_t value_ix = 0; value_ix < num_values; value_ix++) {
0172 out_tensor.addToFloatData(data[value_ix]);
0173 }
0174 } else if (onnx_tensor_type.GetElementType() == ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64) {
0175 auto *data = onnx_tensor.GetTensorMutableData<int64_t>();
0176 for (size_t value_ix = 0; value_ix < num_values; value_ix++) {
0177 out_tensor.addToInt64Data(data[value_ix]);
0178 }
0179 } else {
0180 error("Unsupported ONNXTensorElementDataType {}", static_cast<int>(onnx_tensor_type.GetElementType()));
0181 }
0182 }
0183 } catch (const Ort::Exception& exception) {
0184 error("Error running model inference: {}", exception.what());
0185 throw;
0186 }
0187 }
0188
0189 }
0190 #endif