File indexing completed on 2024-11-15 08:59:49
0001
0002
0003
0004 #include <fmt/core.h>
0005 #include <onnxruntime_c_api.h>
0006 #include <onnxruntime_cxx_api.h>
0007 #include <algorithm>
0008 #include <cstddef>
0009 #include <exception>
0010 #include <gsl/pointers>
0011 #include <iterator>
0012 #include <ostream>
0013
0014 #include "InclusiveKinematicsML.h"
0015
0016 namespace eicrecon {
0017
0018 static std::string print_shape(const std::vector<std::int64_t>& v) {
0019 std::stringstream ss("");
0020 for (std::size_t i = 0; i < v.size() - 1; i++) ss << v[i] << "x";
0021 ss << v[v.size() - 1];
0022 return ss.str();
0023 }
0024
0025 template <typename T>
0026 Ort::Value vec_to_tensor(std::vector<T>& data, const std::vector<std::int64_t>& shape) {
0027 Ort::MemoryInfo mem_info =
0028 Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
0029 auto tensor = Ort::Value::CreateTensor<T>(mem_info, data.data(), data.size(), shape.data(), shape.size());
0030 return tensor;
0031 }
0032
0033 void InclusiveKinematicsML::init() {
0034
0035 m_env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "inclusive-kinematics-ml");
0036 Ort::SessionOptions session_options;
0037 try {
0038 m_session = Ort::Session(m_env, m_cfg.modelPath.c_str(), session_options);
0039
0040
0041 Ort::AllocatorWithDefaultOptions allocator;
0042 debug("Input Node Name/Shape:");
0043 for (std::size_t i = 0; i < m_session.GetInputCount(); i++) {
0044 m_input_names.emplace_back(m_session.GetInputNameAllocated(i, allocator).get());
0045 if (m_session.GetInputTypeInfo(i).GetONNXType() == ONNX_TYPE_TENSOR) {
0046 m_input_shapes.emplace_back(m_session.GetInputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape());
0047 debug("\t{} : {}", m_input_names.at(i), print_shape(m_input_shapes.at(i)));
0048 } else {
0049 m_input_shapes.emplace_back();
0050 debug("\t{} : not a tensor", m_input_names.at(i));
0051 }
0052 }
0053
0054
0055 debug("Output Node Name/Shape:");
0056 for (std::size_t i = 0; i < m_session.GetOutputCount(); i++) {
0057 m_output_names.emplace_back(m_session.GetOutputNameAllocated(i, allocator).get());
0058 if (m_session.GetOutputTypeInfo(i).GetONNXType() == ONNX_TYPE_TENSOR) {
0059 m_output_shapes.emplace_back(m_session.GetOutputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape());
0060 debug("\t{} : {}", m_output_names.at(i), print_shape(m_output_shapes.at(i)));
0061 } else {
0062 m_output_shapes.emplace_back();
0063 debug("\t{} : not a tensor", m_output_names.at(i));
0064 }
0065 }
0066
0067
0068 m_input_names_char.resize(m_input_names.size(), nullptr);
0069 std::transform(std::begin(m_input_names), std::end(m_input_names), std::begin(m_input_names_char),
0070 [&](const std::string& str) { return str.c_str(); });
0071 m_output_names_char.resize(m_output_names.size(), nullptr);
0072 std::transform(std::begin(m_output_names), std::end(m_output_names), std::begin(m_output_names_char),
0073 [&](const std::string& str) { return str.c_str(); });
0074
0075 } catch(std::exception& e) {
0076 error(e.what());
0077 }
0078 }
0079
0080 void InclusiveKinematicsML::process(
0081 const InclusiveKinematicsML::Input& input,
0082 const InclusiveKinematicsML::Output& output) const {
0083
0084 const auto [electron, da] = input;
0085 auto [ml] = output;
0086
0087
0088 if (electron->size() == 0 || da->size() == 0) {
0089 debug("skipping because input collections have no entries");
0090 return;
0091 }
0092
0093
0094 if (m_input_names.size() != 1 || m_output_names.size() != 1) {
0095 debug("skipping because model has incorrect input and output size");
0096 return;
0097 }
0098
0099
0100 std::vector<float> input_tensor_values;
0101 std::vector<Ort::Value> input_tensors;
0102 for (std::size_t i = 0; i < electron->size(); i++) {
0103 input_tensor_values.push_back(electron->at(i).getX());
0104 }
0105 input_tensors.emplace_back(vec_to_tensor<float>(input_tensor_values, m_input_shapes.front()));
0106
0107
0108 if (! input_tensors[0].IsTensor() || input_tensors[0].GetTensorTypeAndShapeInfo().GetShape() != m_input_shapes.front()) {
0109 debug("skipping because input tensor shape incorrect");
0110 return;
0111 }
0112
0113
0114 try {
0115 auto output_tensors = m_session.Run(Ort::RunOptions{nullptr}, m_input_names_char.data(), input_tensors.data(),
0116 m_input_names_char.size(), m_output_names_char.data(), m_output_names_char.size());
0117
0118
0119 if (!output_tensors[0].IsTensor() || output_tensors.size() != m_output_names.size()) {
0120 debug("skipping because output tensor shape incorrect");
0121 return;
0122 }
0123
0124
0125 float* output_tensor_data = output_tensors[0].GetTensorMutableData<float>();
0126 auto x = output_tensor_data[0];
0127 auto kin = ml->create();
0128 kin.setX(x);
0129
0130 } catch (const Ort::Exception& exception) {
0131 error("error running model inference: {}", exception.what());
0132 }
0133 }
0134
0135 }