Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2026-01-07 09:24:58

0001 // SPDX-License-Identifier: LGPL-3.0-or-later
0002 // Copyright (C) 2022 - 2025 Whitney Armstrong, Wouter Deconinck, Sylvester Joosten, Dmitry Romanov, Yann Bedfer
0003 
0004 /*
0005   Digitization specific to MPGDs.
0006   - What's special in MPGDs is their 2D-strip readout: i.e. simultaneous
0007    registering along two sets of coordinate strips.
0008   - The "process" method involves a combination of segmentation, simulation and
0009    digitization.
0010   - The segmentation done when producing "sim_hits", and stored as a pixel
0011    cellID, is overwritten by strip cellIDs, via "dd4hep::MultiSegmentation".
0012   - The simulation will eventually involve simulating the amplitude and timing
0013    correlation of the two coordinates, and the spreading of the charge on
0014    adjacent strips producing multi-hit clusters.
0015     The preliminary version is rudimentary: single-hit clusters, with identical
0016    timing and uncorrelated amplitudes.
0017   - The digitization follows the standard steps, only that it needs to be
0018    convoluted with the simulation.
0019   NOTA BENE: The file could be simplified, see issue #1702.
0020  */
0021 
0022 #include "MPGDTrackerDigi.h"
0023 
0024 #include <DD4hep/Alignments.h>
0025 #include <DD4hep/DetElement.h>
0026 #include <DD4hep/Handle.h>
0027 #include <DD4hep/IDDescriptor.h>
0028 #include <DD4hep/Objects.h>
0029 #include <DD4hep/Readout.h>
0030 #include <DD4hep/VolumeManager.h>
0031 #include <DD4hep/detail/SegmentationsInterna.h>
0032 #include <DDSegmentation/BitFieldCoder.h>
0033 #include <Evaluator/DD4hepUnits.h>
0034 #include <JANA/JException.h>
0035 #include <Math/GenVector/Cartesian3D.h>
0036 #include <Math/GenVector/DisplacementVector3D.h>
0037 #include <Parsers/Primitives.h>
0038 // Access "algorithms:GeoSvc"
0039 #include <algorithms/geo.h>
0040 #include <algorithms/logger.h>
0041 #include <edm4hep/MCParticleCollection.h>
0042 #include <edm4hep/Vector3d.h>
0043 #include <edm4hep/Vector3f.h>
0044 #include <fmt/core.h>
0045 #include <algorithm>
0046 #include <cmath>
0047 #include <cstdint>
0048 #include <gsl/pointers>
0049 #include <initializer_list>
0050 #include <iterator>
0051 #include <random>
0052 #include <unordered_map>
0053 #include <utility>
0054 #include <vector>
0055 
0056 #include "algorithms/digi/MPGDTrackerDigiConfig.h"
0057 
0058 using namespace dd4hep;
0059 
0060 namespace eicrecon {
0061 
0062 void MPGDTrackerDigi::init() {
0063   // Access id decoder
0064   m_detector                            = algorithms::GeoSvc::instance().detector();
0065   const dd4hep::BitFieldCoder* m_id_dec = nullptr;
0066   if (m_cfg.readout.empty()) {
0067     throw JException("Readout is empty");
0068   }
0069   try {
0070     m_seg    = m_detector->readout(m_cfg.readout).segmentation();
0071     m_id_dec = m_detector->readout(m_cfg.readout).idSpec().decoder();
0072   } catch (...) {
0073     critical("Failed to load ID decoder for \"{}\" readout.", m_cfg.readout);
0074     throw JException("Failed to load ID decoder");
0075   }
0076   // Method "process" relies on a strict assumption on the IDDescriptor:
0077   // - Must have a "strip" field.
0078   // - That "strip" field includes bits 30|31.
0079   // Let's check.
0080   if (m_id_dec->get(((CellID)0x3) << 30, "strip") != 0x3) {
0081     critical(R"(Missing or invalid "strip" field in IDDescriptor for "{}"
0082         readout.)",
0083              m_cfg.readout);
0084     throw JException("Invalid IDDescriptor");
0085   }
0086   debug(R"(Find valid "strip" field in IDDescriptor for "{}" readout.)", m_cfg.readout);
0087 }
0088 
0089 void MPGDTrackerDigi::process(const MPGDTrackerDigi::Input& input,
0090                               const MPGDTrackerDigi::Output& output) const {
0091 
0092   // ********** SIMULATE THE 2D-strip READOUT of MPGDs.
0093   // - Overwrite and extend segmentation stored in "sim_hit", which is anyway
0094   //  expected to be along a single coordinate (this happens to allow one to
0095   //  reconstruct data w/ a segmentation differing from that used when
0096   //  generating the data).
0097   // - New segmentation is along two coordinates, described by two cellID's
0098   //  with each a distinctive "strip" field.
0099   //   N.B.: Assumptions on the IDDescriptor: the "strip" specification
0100   //  is fixed = cellID>>32&0x3.
0101   // - The simulation is simplistic: single-hit cluster per coordinate.
0102 
0103   const auto [headers, sim_hits] = input;
0104   auto [raw_hits, associations]  = output;
0105 
0106   // local random generator
0107   auto seed = m_uid.getUniqueID(*headers, name());
0108   std::default_random_engine generator(seed);
0109   std::normal_distribution<double> gaussian;
0110 
0111   // A map of unique cellIDs with temporary structure RawHit
0112   std::unordered_map<std::uint64_t, edm4eic::MutableRawTrackerHit> cell_hit_map;
0113   // Prepare for strip segmentation
0114   const Position dummy(0, 0, 0);
0115   const VolumeManager& volman = m_detector->volumeManager();
0116 
0117   using CellIDs = std::pair<CellID, CellID>;
0118   using Sim2IDs = std::vector<CellIDs>;
0119   Sim2IDs sim2IDs;
0120   for (const edm4hep::SimTrackerHit& sim_hit : *sim_hits) {
0121 
0122     // ***** TIME SMEARING
0123     // - Simplistic treatment.
0124     // - A more realistic one would have to distinguish a smearing common to
0125     //  both coordinates of the 2D-strip readout (due to the drifting of the
0126     //  leading primary electrons) from other smearing effects, specific to
0127     //  each coordinate.
0128     double time_smearing = gaussian(generator) * m_cfg.timeResolution;
0129     double result_time   = sim_hit.getTime() + time_smearing;
0130     auto hit_time_stamp  = (std::int32_t)(result_time * 1e3);
0131 
0132     // ***** SEGMENTATION
0133     // - The two cellID's are encoded via a "dd4hep::MultiSegmentation"
0134     //  discriminating on the strip field, w/ "strip" setting of 0x1 (
0135     //  called 'p') and 0x2 (called 'n').
0136     // - They are evaluated based on "sim_hit" Cartesian coordinates
0137     //  positions
0138     //   Given that all the segmentation classes foreseen for MPGDs (
0139     //  "CartesianGrid.." for Outer and EndCaps, "CylindricalGridPhiZ" for
0140     //  "CyMBaL") disregard the _global_ position argument to
0141     //  "dd4hep::Segmentation::cellID", we need the _local_ position and
0142     //  only that.
0143     const edm4hep::Vector3d& pos = sim_hit.getPosition();
0144     using dd4hep::mm;
0145     Position gpos(pos.x * mm, pos.y * mm, pos.z * mm);
0146     CellID vID = // Note: Only the bits corresponding to the volumeID will
0147         // be used. The rest, encoding the segmentation stored in "sim_hit",
0148         // being disregared.
0149         sim_hit.getCellID();
0150     DetElement local = volman.lookupDetElement(vID);
0151     const auto lpos  = local.nominal().worldToLocal(gpos);
0152     // p "strip"
0153     CellID stripBitp = ((CellID)0x1) << 30;
0154     CellID vIDp      = vID | stripBitp;
0155     CellID cIDp      = m_seg->cellID(lpos, dummy, vIDp);
0156     // n "strip"
0157     CellID stripBitn = ((CellID)0x2) << 30;
0158     CellID vIDn      = vID | stripBitn;
0159     CellID cIDn      = m_seg->cellID(lpos, dummy, vIDn);
0160 
0161     sim2IDs.emplace_back(cIDp, cIDn); // Remember cellIDs.
0162     // ***** DEBUGGING INFO
0163     if (level() >= algorithms::LogLevel::kDebug) {
0164       CellID hIDp = cIDp >> 32;
0165       CellID sIDp = cIDp >> 30 & 0x3;
0166       debug("--------------------");
0167       debug("Hit cellIDp  = 0x{:08x}, 0x{:08x} 0x{:02x}", hIDp, vIDp, sIDp);
0168       CellID hIDn = cIDn >> 32;
0169       CellID sIDn = cIDn >> 30 & 0x3;
0170       debug("Hit cellIDn  = 0x{:08x}, 0x{:08x} 0x{:02x}", hIDn, vIDn, sIDn);
0171       debug("   position  = ({:.2f}, {:.2f}, {:.2f})", sim_hit.getPosition().x,
0172             sim_hit.getPosition().y, sim_hit.getPosition().z);
0173       debug("   xy_radius = {:.2f}", std::hypot(sim_hit.getPosition().x, sim_hit.getPosition().y));
0174       debug("   momentum  = ({:.2f}, {:.2f}, {:.2f})", sim_hit.getMomentum().x,
0175             sim_hit.getMomentum().y, sim_hit.getMomentum().z);
0176       debug("   edep = {:.2f}", sim_hit.getEDep());
0177       debug("   time = {:.4f}[ns]", sim_hit.getTime());
0178       debug("   particle time = {}[ns]", sim_hit.getParticle().getTime());
0179       debug("   time smearing: {:.4f}, resulting time = {:.4f} [ns]", time_smearing, result_time);
0180       debug("   hit_time_stamp: {} [~ps]", hit_time_stamp);
0181     }
0182 
0183     // ***** APPLY THRESHOLD
0184     if (sim_hit.getEDep() < m_cfg.threshold) {
0185       debug("  edep is below threshold of {:.2f} [keV]", m_cfg.threshold / keV);
0186       continue;
0187     }
0188 
0189     // ***** HIT ACCUMULATION
0190     for (CellID cID : {cIDp, cIDn}) {
0191       if (!cell_hit_map.contains(cID)) {
0192         // This cell doesn't have hits
0193         cell_hit_map[cID] = {
0194             cID, (std::int32_t)std::llround(sim_hit.getEDep() * 1e6),
0195             hit_time_stamp // ns->ps
0196         };
0197       } else {
0198         // There is previous values in the cell
0199         auto& hit = cell_hit_map[cID];
0200         debug("  Hit already exists in cell ID={}, prev. hit time: {}", cID, hit.getTimeStamp());
0201 
0202         // keep earliest time for hit
0203         hit.setTimeStamp(std::min(hit_time_stamp, hit.getTimeStamp()));
0204 
0205         // sum deposited energy
0206         auto charge = hit.getCharge();
0207         hit.setCharge(charge + (std::int32_t)std::llround(sim_hit.getEDep() * 1e6));
0208       }
0209     }
0210   }
0211 
0212   // ***** raw_hit INSTANTIATION AND raw<-sim_hit's ASSOCIATION
0213   for (auto item : cell_hit_map) {
0214     raw_hits->push_back(item.second);
0215     auto sim_it = sim2IDs.cbegin();
0216     for (const auto& sim_hit : *sim_hits) {
0217       CellIDs cIDs = *sim_it++;
0218       for (CellID cID : {cIDs.first, cIDs.second}) {
0219         if (item.first == cID) {
0220           // set association
0221           auto hitassoc = associations->create();
0222           hitassoc.setWeight(1.0);
0223           hitassoc.setRawHit(item.second);
0224           hitassoc.setSimHit(sim_hit);
0225         }
0226       }
0227     }
0228   }
0229 }
0230 
0231 } // namespace eicrecon