Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-07-02 07:54:29

0001 // SPDX-License-Identifier: LGPL-3.0-or-later
0002 // Copyright (C) 2022 - 2025 Whitney Armstrong, Wouter Deconinck, Sylvester Joosten, Dmitry Romanov, Yann Bedfer
0003 
0004 /*
0005   Digitization specific to MPGDs.
0006   - What's special in MPGDs is their 2D-strip readout: i.e. simultaneous
0007    registering along two sets of coordinate strips.
0008   - The "process" method involves a combination of segmentation, simulation and
0009    digitization.
0010   - The segmentation done when producing "sim_hits", and stored as a pixel
0011    cellID, is overwritten by strip cellIDs, via "dd4hep::MultiSegmentation".
0012   - The simulation will eventually involve simulating the amplitude and timing
0013    correlation of the two coordinates, and the spreading of the charge on
0014    adjacent strips producing multi-hit clusters.
0015     The preliminary version is rudimentary: single-hit clusters, with identical
0016    timing and uncorrelated amplitudes.
0017   - The digitization follows the standard steps, only that it needs to be
0018    convoluted with the simulation.
0019   NOTA BENE: The file could be simplified, see issue #1702.
0020  */
0021 
0022 #include "MPGDTrackerDigi.h"
0023 
0024 #include <DD4hep/Alignments.h>
0025 #include <DD4hep/DetElement.h>
0026 #include <DD4hep/Handle.h>
0027 #include <DD4hep/IDDescriptor.h>
0028 #include <DD4hep/Objects.h>
0029 #include <DD4hep/Readout.h>
0030 #include <DD4hep/VolumeManager.h>
0031 #include <DD4hep/config.h>
0032 #include <DD4hep/detail/SegmentationsInterna.h>
0033 #include <DDSegmentation/BitFieldCoder.h>
0034 #include <Evaluator/DD4hepUnits.h>
0035 #include <JANA/JException.h>
0036 #include <Math/GenVector/Cartesian3D.h>
0037 #include <Math/GenVector/DisplacementVector3D.h>
0038 #include <Parsers/Primitives.h>
0039 // Access "algorithms:GeoSvc"
0040 #include <algorithms/geo.h>
0041 #include <algorithms/logger.h>
0042 #include <edm4hep/EDM4hepVersion.h>
0043 #include <edm4eic/EDM4eicVersion.h>
0044 #include <edm4hep/MCParticleCollection.h>
0045 #include <edm4hep/Vector3d.h>
0046 #include <edm4hep/Vector3f.h>
0047 #include <fmt/core.h>
0048 #include <algorithm>
0049 #include <cmath>
0050 #include <cstdint>
0051 #include <gsl/pointers>
0052 #include <initializer_list>
0053 #include <unordered_map>
0054 #include <utility>
0055 #include <vector>
0056 
0057 #include "algorithms/digi/MPGDTrackerDigiConfig.h"
0058 
0059 using namespace dd4hep;
0060 
0061 namespace eicrecon {
0062 
0063 void MPGDTrackerDigi::init() {
0064   // Create random gauss function
0065   m_gauss = [&]() {
0066     return m_random.Gaus(0, m_cfg.timeResolution);
0067     //return m_rng.gaussian<double>(0., m_cfg.timeResolution);
0068   };
0069 
0070   // Access id decoder
0071   m_detector                            = algorithms::GeoSvc::instance().detector();
0072   const dd4hep::BitFieldCoder* m_id_dec = nullptr;
0073   if (m_cfg.readout.empty()) {
0074     throw JException("Readout is empty");
0075   }
0076   try {
0077     m_seg    = m_detector->readout(m_cfg.readout).segmentation();
0078     m_id_dec = m_detector->readout(m_cfg.readout).idSpec().decoder();
0079   } catch (...) {
0080     critical("Failed to load ID decoder for \"{}\" readout.", m_cfg.readout);
0081     throw JException("Failed to load ID decoder");
0082   }
0083   // Method "process" relies on a strict assumption on the IDDescriptor:
0084   // - Must have a "strip" field.
0085   // - That "strip" field includes bits 30|31.
0086   // Let's check.
0087   if (m_id_dec->get(((CellID)0x3) << 30, "strip") != 0x3) {
0088     critical(R"(Missing or invalid "strip" field in IDDescriptor for "{}"
0089         readout.)",
0090              m_cfg.readout);
0091     throw JException("Invalid IDDescriptor");
0092   }
0093   debug(R"(Find valid "strip" field in IDDescriptor for "{}" readout.)", m_cfg.readout);
0094 }
0095 
0096 void MPGDTrackerDigi::process(const MPGDTrackerDigi::Input& input,
0097                               const MPGDTrackerDigi::Output& output) const {
0098 
0099   // ********** SIMULATE THE 2D-strip READOUT of MPGDs.
0100   // - Overwrite and extend segmentation stored in "sim_hit", which is anyway
0101   //  expected to be along a single coordinate (this happens to allow one to
0102   //  reconstruct data w/ a segmentation differing from that used when
0103   //  generating the data).
0104   // - New segmentation is along two coordinates, described by two cellID's
0105   //  with each a distinctive "strip" field.
0106   //   N.B.: Assumptions on the IDDescriptor: the "strip" specification
0107   //  is fixed = cellID>>32&0x3.
0108   // - The simulation is simplistic: single-hit cluster per coordinate.
0109 
0110   const auto [sim_hits]         = input;
0111   auto [raw_hits, associations] = output;
0112 
0113   // A map of unique cellIDs with temporary structure RawHit
0114   std::unordered_map<std::uint64_t, edm4eic::MutableRawTrackerHit> cell_hit_map;
0115   // Prepare for strip segmentation
0116   const Position dummy(0, 0, 0);
0117   const VolumeManager& volman = m_detector->volumeManager();
0118 
0119   using CellIDs = std::pair<CellID, CellID>;
0120   using Sim2IDs = std::vector<CellIDs>;
0121   Sim2IDs sim2IDs;
0122   for (const edm4hep::SimTrackerHit& sim_hit : *sim_hits) {
0123 
0124     // ***** TIME SMEARING
0125     // - Simplistic treatment.
0126     // - A more realistic one would have to distinguish a smearing common to
0127     //  both coordinates of the 2D-strip readout (due to the drifting of the
0128     //  leading primary electrons) from other smearing effects, specific to
0129     //  each coordinate.
0130     double time_smearing = m_gauss();
0131     double result_time   = sim_hit.getTime() + time_smearing;
0132     auto hit_time_stamp  = (std::int32_t)(result_time * 1e3);
0133 
0134     // ***** SEGMENTATION
0135     // - The two cellID's are encoded via a "dd4hep::MultiSegmentation"
0136     //  discriminating on the strip field, w/ "strip" setting of 0x1 (
0137     //  called 'p') and 0x2 (called 'n').
0138     // - They are evaluated based on "sim_hit" Cartesian coordinates
0139     //  positions
0140     //   Given that all the segmentation classes foreseen for MPGDs (
0141     //  "CartesianGrid.." for Outer and EndCaps, "CylindricalGridPhiZ" for
0142     //  "CyMBaL") disregard the _global_ position argument to
0143     //  "dd4hep::Segmentation::cellID", we need the _local_ position and
0144     //  only that.
0145     const edm4hep::Vector3d& pos = sim_hit.getPosition();
0146     using dd4hep::mm;
0147     Position gpos(pos.x * mm, pos.y * mm, pos.z * mm);
0148     CellID vID = // Note: Only the bits corresponding to the volumeID will
0149         // be used. The rest, encoding the segmentation stored in "sim_hit",
0150         // being disregared.
0151         sim_hit.getCellID();
0152     DetElement local = volman.lookupDetElement(vID);
0153     const auto lpos  = local.nominal().worldToLocal(gpos);
0154     // p "strip"
0155     CellID stripBitp = ((CellID)0x1) << 30;
0156     CellID vIDp      = vID | stripBitp;
0157     CellID cIDp      = m_seg->cellID(lpos, dummy, vIDp);
0158     // n "strip"
0159     CellID stripBitn = ((CellID)0x2) << 30;
0160     CellID vIDn      = vID | stripBitn;
0161     CellID cIDn      = m_seg->cellID(lpos, dummy, vIDn);
0162 
0163     sim2IDs.emplace_back(cIDp, cIDn); // Remember cellIDs.
0164     // ***** DEBUGGING INFO
0165     if (level() >= algorithms::LogLevel::kDebug) {
0166       CellID hIDp = cIDp >> 32;
0167       CellID sIDp = cIDp >> 30 & 0x3;
0168       debug("--------------------");
0169       debug("Hit cellIDp  = 0x{:08x}, 0x{:08x} 0x{:02x}", hIDp, vIDp, sIDp);
0170       CellID hIDn = cIDn >> 32;
0171       CellID sIDn = cIDn >> 30 & 0x3;
0172       debug("Hit cellIDn  = 0x{:08x}, 0x{:08x} 0x{:02x}", hIDn, vIDn, sIDn);
0173       debug("   position  = ({:.2f}, {:.2f}, {:.2f})", sim_hit.getPosition().x,
0174             sim_hit.getPosition().y, sim_hit.getPosition().z);
0175       debug("   xy_radius = {:.2f}", std::hypot(sim_hit.getPosition().x, sim_hit.getPosition().y));
0176       debug("   momentum  = ({:.2f}, {:.2f}, {:.2f})", sim_hit.getMomentum().x,
0177             sim_hit.getMomentum().y, sim_hit.getMomentum().z);
0178       debug("   edep = {:.2f}", sim_hit.getEDep());
0179       debug("   time = {:.4f}[ns]", sim_hit.getTime());
0180 #if EDM4HEP_BUILD_VERSION >= EDM4HEP_VERSION(0, 99, 0)
0181       debug("   particle time = {}[ns]", sim_hit.getParticle().getTime());
0182 #else
0183       debug("   particle time = {}[ns]", sim_hit.getMCParticle().getTime());
0184 #endif
0185       debug("   time smearing: {:.4f}, resulting time = {:.4f} [ns]", time_smearing, result_time);
0186       debug("   hit_time_stamp: {} [~ps]", hit_time_stamp);
0187     }
0188 
0189     // ***** APPLY THRESHOLD
0190     if (sim_hit.getEDep() < m_cfg.threshold) {
0191       debug("  edep is below threshold of {:.2f} [keV]", m_cfg.threshold / keV);
0192       continue;
0193     }
0194 
0195     // ***** HIT ACCUMULATION
0196     for (CellID cID : {cIDp, cIDn}) {
0197       if (!cell_hit_map.contains(cID)) {
0198         // This cell doesn't have hits
0199         cell_hit_map[cID] = {
0200             cID, (std::int32_t)std::llround(sim_hit.getEDep() * 1e6),
0201             hit_time_stamp // ns->ps
0202         };
0203       } else {
0204         // There is previous values in the cell
0205         auto& hit = cell_hit_map[cID];
0206         debug("  Hit already exists in cell ID={}, prev. hit time: {}", cID, hit.getTimeStamp());
0207 
0208         // keep earliest time for hit
0209         hit.setTimeStamp(std::min(hit_time_stamp, hit.getTimeStamp()));
0210 
0211         // sum deposited energy
0212         auto charge = hit.getCharge();
0213         hit.setCharge(charge + (std::int32_t)std::llround(sim_hit.getEDep() * 1e6));
0214       }
0215     }
0216   }
0217 
0218   // ***** raw_hit INSTANTIATION AND raw<-sim_hit's ASSOCIATION
0219   for (auto item : cell_hit_map) {
0220     raw_hits->push_back(item.second);
0221     auto sim_it = sim2IDs.cbegin();
0222     for (const auto& sim_hit : *sim_hits) {
0223       CellIDs cIDs = *sim_it++;
0224       for (CellID cID : {cIDs.first, cIDs.second}) {
0225         if (item.first == cID) {
0226           // set association
0227           auto hitassoc = associations->create();
0228           hitassoc.setWeight(1.0);
0229           hitassoc.setRawHit(item.second);
0230 #if EDM4EIC_VERSION_MAJOR >= 6
0231           hitassoc.setSimHit(sim_hit);
0232 #else
0233           hitassoc.addToSimHits(sim_hit);
0234 #endif
0235         }
0236       }
0237     }
0238   }
0239 }
0240 
0241 } // namespace eicrecon